Great Lakes Geometry Conference 2014
2014 年五大湖几何会议
基本信息
- 批准号:1359662
- 负责人:
- 金额:$ 2.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Great Lakes Geometry Conference 2014 will be held at the University of Notre Dame on April 26-27, 2014. The conference will feature a diverse range of topics in geometry and topology, although a common theme is the study of geometric and topological structures using partial differential equations. The conference will feature seven speakers, who are experts on different topics, ranging from the Ricci flow and Kahler-Einstein metrics, to gauge theoretic invariants of knots and symplectic manifolds. The conference will expose graduate students and early career researchers to new developments in these different areas.The Great Lakes Geometry Conference has been held annually in the Great Lakes region, and this conference will be the 13th in the series. The use of partial differential equations in geometry and topology has produced many spectacular advances, for instance the solution of the Poincare conjecture and understanding the topology of four dimensional manifolds. The conference will draw together seven well-known experts on a diverse range of topics in geometry and topology, who use techniques either directly or indirectly related to partial differential equations. We expect that a large number of graduate students and junior mathematicians will attend from Midwestern universities and beyond, and we encourage the participation of women and members of other under represented groups. In addition to exposing early career mathematicians to recent advances in geometry and topology we hope to foster interactions between different areas.The website for the conference is: www.nd.edu/~gszekely/GreatLakes
2014年五大湖几何会议将于2014年4月26日至27日在圣母大学举行。会议将以几何和拓扑学的各种主题为特色,尽管一个共同的主题是使用偏微分方程研究几何和拓扑结构。会议将有七位演讲者,他们是不同主题的专家,从Ricci流和Kahler-Einstein度量,到衡量结和辛流形的理论不变量。会议将使研究生和早期职业研究人员接触到这些不同领域的新发展。五大湖几何会议每年在五大湖地区举行,本次会议将是该系列会议的第13届。使用偏微分方程在几何和拓扑产生了许多惊人的进步,例如解决庞加莱猜想和理解拓扑的四维流形。该会议将汇集七位几何和拓扑学领域不同主题的知名专家,他们使用与偏微分方程直接或间接相关的技术。我们预计,大量的研究生和初级数学家将参加从中西部大学和超越,我们鼓励妇女和其他代表团体的成员的参与。除了让早期的职业数学家接触几何和拓扑学的最新进展外,我们还希望促进不同领域之间的互动。会议网站是:www.nd.edu/~gszekely/GreatLakes
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor Szekelyhidi其他文献
Gabor Szekelyhidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor Szekelyhidi', 18)}}的其他基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 2.39万 - 项目类别:
Continuing Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 2.39万 - 项目类别:
Continuing Grant
Thematic Month at CIRM in Complex Geometry
CIRM 复杂几何主题月
- 批准号:
1901659 - 财政年份:2019
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
CAREER: Canonical metrics and stability in complex geometry
职业:复杂几何中的规范度量和稳定性
- 批准号:
1350696 - 财政年份:2014
- 资助金额:
$ 2.39万 - 项目类别:
Continuing Grant
Canonical metrics in complex geometry
复杂几何中的规范度量
- 批准号:
0904223 - 财政年份:2009
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Studying the relation between stability of algebraic varieties and the existence of extremal Kahler metrics.
研究代数簇的稳定性与极值卡勒度量的存在性之间的关系。
- 批准号:
EP/D065933/1 - 财政年份:2006
- 资助金额:
$ 2.39万 - 项目类别:
Fellowship
相似海外基金
Seeing in the dark: evolution of supraglacial lakes on the Greenland and Antarctic ice sheets during polar night
黑暗中的视觉:极夜期间格陵兰岛和南极冰原上冰上湖泊的演化
- 批准号:
2902592 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Studentship
Great Lakes Center for Fresh Waters and Human Health
五大湖淡水和人类健康中心
- 批准号:
2418066 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
- 批准号:
2319044 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Conference: CET: Great Lakes Offshore Wind (GLOW)
会议:CET:五大湖海上风电 (GLOW)
- 批准号:
2346411 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: A Paleolimnological Investigation of Climate and Nitrogen Impacts on Primary Producers in Greenland Lakes and Community Water Supplies
博士论文研究:气候和氮对格陵兰湖泊和社区供水初级生产者影响的古湖泊学调查
- 批准号:
2330271 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
- 批准号:
2333917 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant
NSF Engines: Great Lakes Water Innovation Engine
NSF 引擎:五大湖水资源创新引擎
- 批准号:
2315268 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Advancing a sustainable alternative packaging ecosystem in the Great Lakes region (MI, OH)
NSF 引擎开发奖:推动五大湖地区(密歇根州、俄亥俄州)可持续替代包装生态系统
- 批准号:
2314459 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Cooperative Agreement
Planning: FIRE-PLAN: Merging diverse knowledge systems to advance restoration of fire-dependent forests in the Great Lakes region
规划:FIRE-PLAN:融合不同的知识系统,推进五大湖地区依赖火灾的森林的恢复
- 批准号:
2335838 - 财政年份:2024
- 资助金额:
$ 2.39万 - 项目类别:
Standard Grant