CAREER: Canonical metrics and stability in complex geometry
职业:复杂几何中的规范度量和稳定性
基本信息
- 批准号:1350696
- 负责人:
- 金额:$ 44.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1350696, Principal Investigator: Gabor SzekelyhidiGeometric partial differential equations govern much of the physical world. For example solutions of Einstein's equations are intimately related to our understanding of the universe. The proposed research studies differential equations related to Einstein's equations and the key question is how the global structure of a space influences the local, analytic properties, such as singularities of the solutions of such equations. Understanding this phenomenon will have applications in physics and the sciences in general. In addition the principal investigator proposes integrated research and educational programs. These programs will raise interest in high school students towards mathematics, and it will encourage undergraduate students to pursue K-12 STEM education.The principal investigator's proposed research is concerned with the study of canonical Kahler metrics on algebraic varieties, in particular the extremal metrics introduced by Calabi in the 1980's, and questions related to the J-flow introduced by Donaldson. The main conjecture in the field relates the existence of extremal metrics to the stability of the variety in the sense of geometric invariant theory, and the PI proposes an analogous conjecture for the J-flow. A particular feature of the proposal is a focus on situations when no extremal metric exists. On the algebro-geometric side the goal is to construct canonical degenerations of the variety and the PI's proposal is to use filtrations of the homogeneous coordinate ring, in analogy with Harder-Narasimhan filtrations of unstable vector bundles. On the differential geometric side one needs to understand the possible limiting behavior of families of extremal metrics. In general this is much more intricate than the much more thoroughly understood case of Kahler-Einstein metrics, and the PI proposes to first restrict attention to metrics with bounded curvature, and to relate the limiting behavior to filtrations. In the proposal a special emphasis is placed on the construction of new examples of extremal metrics, and the applications of these ideas to other problems in Kahler geometry.
摘要奖:DMS 1350696,首席研究员:Gabor Szekelyhidi几何偏微分方程支配着物理世界的大部分。例如,爱因斯坦方程的解与我们对宇宙的理解密切相关。 拟议的研究研究与爱因斯坦方程相关的微分方程,关键问题是空间的全局结构如何影响局部分析性质,例如此类方程解的奇异性。理解这种现象将在物理学和一般科学中得到应用。此外,首席研究员提出综合研究和教育计划。这些项目将提高高中生对数学的兴趣,并鼓励本科生继续进行K-12 STEM教育。首席研究员的拟议研究涉及代数簇上的规范Kahler度量的研究,特别是Calabi在20世纪80年代引入的极值度量,以及与唐纳森引入的J流相关的问题。该领域的主要猜想是将极值度量的存在性与几何不变理论意义上的簇的稳定性联系起来,PI对J流提出了类似的猜想。该提案的一个特别之处是关注不存在极值度量的情况。在代数几何方面的目标是构建规范退化的品种和PI的建议是使用过滤的齐次坐标环,在类比哈德-Narasimhan过滤的不稳定向量丛。在微分几何方面,人们需要理解极值度量族的可能极限行为。一般来说,这比更透彻理解的卡勒-爱因斯坦度量的情况要复杂得多,PI建议首先将注意力限制在有界曲率的度量上,并将限制行为与过滤联系起来。在建议中特别强调的是建设新的极端度量的例子,并应用这些想法的其他问题在Kahler几何。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gromov‐Hausdorff Limits of Kähler Manifolds with Ricci Curvature Bounded Below II
里奇曲率下界为 II 的克勒流形的格罗莫夫豪斯多夫极限
- DOI:10.1002/cpa.21900
- 发表时间:2020
- 期刊:
- 影响因子:3
- 作者:Liu, Gang;Szekelyhidi, Gábor
- 通讯作者:Szekelyhidi, Gábor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor Szekelyhidi其他文献
Gabor Szekelyhidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor Szekelyhidi', 18)}}的其他基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Continuing Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
Continuing Grant
Thematic Month at CIRM in Complex Geometry
CIRM 复杂几何主题月
- 批准号:
1901659 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Great Lakes Geometry Conference 2014
2014 年五大湖几何会议
- 批准号:
1359662 - 财政年份:2014
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
- 批准号:
1306298 - 财政年份:2013
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Canonical metrics in complex geometry
复杂几何中的规范度量
- 批准号:
0904223 - 财政年份:2009
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Studying the relation between stability of algebraic varieties and the existence of extremal Kahler metrics.
研究代数簇的稳定性与极值卡勒度量的存在性之间的关系。
- 批准号:
EP/D065933/1 - 财政年份:2006
- 资助金额:
$ 44.28万 - 项目类别:
Fellowship
相似国自然基金
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Hall代数与canonical基
- 批准号:19971060
- 批准年份:1999
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
- 批准号:
23K03120 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
- 批准号:
2303508 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Canonical metrics and stability in complex geometry
复杂几何中的规范度量和稳定性
- 批准号:
2305296 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Existence problem of canonical Kaehler metrics and Hitchin equation
规范凯勒度量与希钦方程的存在性问题
- 批准号:
21K03234 - 财政年份:2021
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canonical metrics and geometric evolutions
规范度量和几何演化
- 批准号:
RGPIN-2016-03708 - 财政年份:2021
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Canonical metrics and geometric evolutions
规范度量和几何演化
- 批准号:
RGPIN-2016-03708 - 财政年份:2020
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual
Geometric Flows and Canonical Kahler Metrics
几何流和规范卡勒度量
- 批准号:
1945869 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Standard Grant
Canonical Kahler metrics for Fano manifolds with non-vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的规范 Kahler 度量
- 批准号:
19J01482 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Canonical metrics and geometric evolutions
规范度量和几何演化
- 批准号:
RGPIN-2016-03708 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Discovery Grants Program - Individual