Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
基本信息
- 批准号:1361236
- 负责人:
- 金额:$ 12.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns some nonlinear partial differential equations (PDE), which have deep connections with optimal control theory, game theory, mathematical finance, homogenization theory, and statistical physics. The main goal is to discover new underlying principles and generic methods to understand the properties of solutions of these nonlinear PDEs. One of the main objects of this proposed research is a class of non convex Hamilton--Jacobi equations, which are the fundamental equations for two-person, zero-sum differential games. Achieving deeper properties of their solutions (singular structures of the gradients, large time average, and so forth) will help a lot in the design of fast numerical methods to approximate the solutions accurately and in the design of optimal strategies for the players in the games.The proposed projects are to (i) continue developing a new approach to obtain large time behavior of solutions of Hamilton-Jacobi equations and related problems, (ii) discover game theory interpretation and dynamical properties of solutions of some weakly coupled systems, (iii) study homogenization of some Hamilton-Jacobi equations, and (iv) obtain a PDE approach to study asymptotic limit for the Langevin equation with vanishing friction coefficient. The topics consist of widely different nonlinear problems but they all satisfy maximum principle and hence admit viscosity solutions. The Crandall-Lions theory of viscosity solutions has been developed extensively in the last thirty years including the existence, uniqueness, stability of the solutions as well as some connections to differential games, front propagations, homogenization theory, optimal control, and weak KAM theory. However, many interesting properties of viscosity solutions, such as regularity, dynamical properties, gradient shock structure, and game theory interpretation of solutions, are still far from being well understood. The PI proposes to develop some new approaches to study (i)-(iv), which are expected to bring new perspective and insights to the field of viscosity solutions. The mathematical tools to be used for (i)-(iv) are composed by techniques from the nonlinear adjoint method (duality method), dynamical system, level set method, optimal control theory, and game theory.
这一建议涉及一些非线性偏微分方程(PDE),它与最优控制理论,博弈论,数学金融,均匀化理论和统计物理有着深刻的联系。主要目标是发现新的基本原理和通用方法来理解这些非线性偏微分方程的解的性质。本文的主要研究对象之一是一类非凸的汉密尔顿-雅可比方程,它是二人零和微分对策的基本方程。实现其解决方案的更深层次属性(梯度的奇异结构,大的时间平均,等)将有助于设计快速数值方法来精确地近似解,并为游戏中的参与者设计最优策略。建议的项目是(i)继续开发一种新的方法来获得汉密尔顿解的大时间行为-Jacobi方程及相关问题,(ii)发现了一些弱耦合系统解的博弈论解释和动力学性质,(iii)研究了一些Hamilton-Jacobi方程的均匀化,(iv)得到了研究摩擦系数为零的Langevin方程渐近极限的PDE方法。这些问题包括广泛不同的非线性问题,但他们都满足最大值原理,因此承认粘性解决方案。Crandall-Lions粘性解理论在过去的三十年中得到了广泛的发展,包括解的存在性、唯一性、稳定性以及与微分对策、前沿传播、均匀化理论、最优控制和弱KAM理论的一些联系。然而,粘性解的许多有趣的性质,如规则性,动力学性质,梯度激波结构,以及解的博弈论解释,仍然远未得到很好的理解。PI建议开发一些新的方法来研究(i)-(iv),这有望为粘度解决方案领域带来新的视角和见解。用于(i)-(iv)的数学工具由来自非线性伴随方法(对偶方法)、动力系统、水平集方法、最优控制理论和博弈论的技术组成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung Tran其他文献
Simulating Population Protocols in Sub-Constant Time per Interaction
在每次交互的次恒定时间内模拟群体协议
- DOI:
10.4230/lipics.esa.2020.16 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Berenbrink;David Hammer;Dominik Kaaser;U. Meyer;M. Penschuck;Hung Tran - 通讯作者:
Hung Tran
Terrestrial Wireless Networks Based on Standard 2G and 3G Technologies
基于标准2G和3G技术的地面无线网络
- DOI:
10.1002/9781119692478.ch2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thanh Khac Vo;Phu Huu Bui;Hung Tran - 通讯作者:
Hung Tran
On isometry groups of gradient Ricci solitons
梯度Ricci孤子的等距群
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ha Tuan Dung;Hung Tran - 通讯作者:
Hung Tran
Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples
- DOI:
10.1016/j.toxicon.2008.07.008 - 发表时间:
2008-09-15 - 期刊:
- 影响因子:
- 作者:
Hung Tran;Carol Leong;Weng Keong Loke;Con Dogovski;Chun-Qiang Liu - 通讯作者:
Chun-Qiang Liu
Meaningful Recovery Using Visual Therapy in a Patient with Balint Syndrome
- DOI:
10.1016/j.apmr.2015.08.350 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Roshni Ranjit;Imelda Llanos;Hung Tran - 通讯作者:
Hung Tran
Hung Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hung Tran', 18)}}的其他基金
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Geometry of Surfaces and Four-Dimensional Manifolds
曲面几何和四维流形
- 批准号:
2104988 - 财政年份:2021
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
CAREER: Front Propagations and Viscosity Solutions
职业:前沿传播和粘度解决方案
- 批准号:
1843320 - 财政年份:2019
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Viscosity Solutions: Beyond Well-Posedness Theory
粘度解决方案:超越适定理论
- 批准号:
1664424 - 财政年份:2017
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1615944 - 财政年份:2015
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
相似国自然基金
脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
- 批准号:82371478
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
tau轻子衰变与新物理模型唯象研究
- 批准号:11005033
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
HIV gp41的NHR区新靶点的确证及高效干预
- 批准号:81072676
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
强子对撞机上新物理信号的多轻子末态研究
- 批准号:10675110
- 批准年份:2006
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 12.3万 - 项目类别:
Studentship
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Research Grant
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
EU-Funded
NAfANE: New Approaches for Approximate Nash Equilibria
NAfANE:近似纳什均衡的新方法
- 批准号:
EP/X039862/1 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Research Grant
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330759 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Developing new approaches and structural materials to rebuild damaged Ukrainian infrastructure with environmental sustainability considerations
EAGER:IMPRESS-U:开发新方法和结构材料,在考虑环境可持续性的情况下重建受损的乌克兰基础设施
- 批准号:
2412196 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
A History of Storms: New Approaches to Climate Fiction and Climate Literacy
风暴史:气候小说和气候素养的新方法
- 批准号:
AH/Y000196/1 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Fellowship
New approaches measuring Australia’s creative workforce: Beyond the Census
衡量澳大利亚创意劳动力的新方法:超越人口普查
- 批准号:
LP230100198 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Linkage Projects
New mathematical approaches to learn the equations of life from noisy data
从噪声数据中学习生命方程的新数学方法
- 批准号:
DP230100025 - 财政年份:2024
- 资助金额:
$ 12.3万 - 项目类别:
Discovery Projects