CAREER: Front Propagations and Viscosity Solutions
职业:前沿传播和粘度解决方案
基本信息
- 批准号:1843320
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns some nonlinear partial differential equations (PDEs) that appear naturally in physics, economics, and engineering and that arise, for example, in the study of crystal growth, composite materials, combustion, game theory, and optimal control theory. The equations studied have deep connections with a host of other areas of mathematics, including the calculus of variations, differential games, dynamical systems, geometry, homogenization theory, and inverse problems. The main goal of the project is to discover new underlying principles and general methods to understand the properties of solutions of the PDEs under investigation. A key object of the research is a crystal growth model, in which the crystal grows in both horizontal direction by adatoms, and in vertical direction by nucleation in a supersaturated media. To make practical use of the model, it is extremely important to understand deeply the qualitative and quantitative aspects of the growth speed of the crystal. An integral part of the project is the educational component including bringing up the number of graduate PDE students at University of Wisconsin-Madison through various activities. The incoming graduate students interested in PDE are encouraged to participate in the principal investigator's PDE reading seminar, and to interact more with their peers and postdocs in the area. In term of undergraduate training, the principal investigator plans to increase the interest of University of Wisconsin-Madison undergraduate mathematics majors in the study of Analysis and PDE through some individual mentoring plans, and two undergraduate summer schools. Besides, the principal investigator plans to organize two conferences in nonlinear PDE and related topics for early career researchers.The proposed research involves two themes. The first is about a level-set mean curvature equation with driving and source terms, and applications to a crystal growth model, in which each level set of the unknown evolves in time by its mean curvature with unit constant force. The second involves Eikonal equations, and homogenization, where the zero-level set of the unknown moves in a periodic environment with highly oscillatory normal velocity. The principal investigator and his collaborators have recently developed some new approaches, which provided solutions to several open problems in these two themes and related areas. The new approaches are expected to be developed further in this project, thereby bringing fresh perspectives on and insights into the field of nonlinear PDE and viscosity solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及一些自然出现在物理学,经济学和工程学中的非线性偏微分方程(PDE),例如,在晶体生长,复合材料,燃烧,博弈论和最优控制理论的研究中出现。所研究的方程与许多其他数学领域有着深刻的联系,包括变分法、微分对策、动力系统、几何、均匀化理论和反问题。该项目的主要目标是发现新的基本原理和一般方法来理解所研究的偏微分方程解的性质。研究的一个重要对象是晶体生长模型,在该模型中,晶体在水平方向上通过吸附原子生长,在垂直方向上通过成核在过饱和介质中生长。为了实际应用该模型,深入了解晶体生长速度的定性和定量方面是非常重要的。该项目的一个组成部分是教育部分,包括通过各种活动增加威斯康星大学麦迪逊分校的研究生偏微分方程学生的数量。鼓励对PDE感兴趣的研究生参加主要研究者的PDE阅读研讨会,并与该领域的同行和博士后进行更多的互动。在本科生培训方面,主要研究者计划通过一些个人指导计划和两个本科生暑期学校来提高威斯康星大学麦迪逊分校本科数学专业学生对分析和PDE研究的兴趣。此外,主要研究者计划组织两次非线性偏微分方程及相关主题的会议,以供早期职业研究者使用。第一个是关于一个水平集平均曲率方程的驱动和源项,并应用到晶体生长模型,其中每个水平集的未知的演变,其平均曲率与单位恒定的力。第二个涉及Eikonal方程,和均匀化,其中的零级设置的未知移动在一个周期性的环境中具有高度振荡的正常速度。首席研究员和他的合作者最近开发了一些新的方法,为这两个主题和相关领域的一些开放问题提供了解决方案。新方法有望在该项目中得到进一步发展,从而为非线性偏微分方程和粘度解决方案领域带来新的视角和见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
State-Constraint Static Hamilton--Jacobi Equations in Nested Domains
状态约束静态哈密顿--嵌套域中的雅可比方程
- DOI:10.1137/19m1292035
- 发表时间:2020
- 期刊:
- 影响因子:2
- 作者:Kim, Yeoneung;Tran, Hung Vinh;Tu, Son
- 通讯作者:Tu, Son
Coagulation‐Fragmentation Equations with Multiplicative Coagulation Kernel and Constant Fragmentation Kernel
具有乘法凝聚核和恒定碎片核的凝聚-碎片方程
- DOI:10.1002/cpa.21979
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Tran, Hung V.;Van, Truong‐Son
- 通讯作者:Van, Truong‐Son
Numerical viscosity solutions to Hamilton-Jacobi equations via a Carleman estimate and the convexification method
- DOI:10.1016/j.jcp.2021.110828
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:M. Klibanov;L. Nguyen;H. Tran
- 通讯作者:M. Klibanov;L. Nguyen;H. Tran
Effective Fronts of Polytope Shapes
多面体形状的有效前沿
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Jing Wenjia;Tran Hung V.;Yu Yifeng
- 通讯作者:Yu Yifeng
Level-set forced mean curvature flow with the Neumann boundary condition
- DOI:10.1016/j.matpur.2022.11.002
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Jiwoong Jang;Dohyun Kwon;Hiroyoshi Mitake;H. Tran
- 通讯作者:Jiwoong Jang;Dohyun Kwon;Hiroyoshi Mitake;H. Tran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung Tran其他文献
Simulating Population Protocols in Sub-Constant Time per Interaction
在每次交互的次恒定时间内模拟群体协议
- DOI:
10.4230/lipics.esa.2020.16 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Berenbrink;David Hammer;Dominik Kaaser;U. Meyer;M. Penschuck;Hung Tran - 通讯作者:
Hung Tran
On isometry groups of gradient Ricci solitons
梯度Ricci孤子的等距群
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ha Tuan Dung;Hung Tran - 通讯作者:
Hung Tran
Terrestrial Wireless Networks Based on Standard 2G and 3G Technologies
基于标准2G和3G技术的地面无线网络
- DOI:
10.1002/9781119692478.ch2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thanh Khac Vo;Phu Huu Bui;Hung Tran - 通讯作者:
Hung Tran
Meaningful Recovery Using Visual Therapy in a Patient with Balint Syndrome
- DOI:
10.1016/j.apmr.2015.08.350 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Roshni Ranjit;Imelda Llanos;Hung Tran - 通讯作者:
Hung Tran
Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples
- DOI:
10.1016/j.toxicon.2008.07.008 - 发表时间:
2008-09-15 - 期刊:
- 影响因子:
- 作者:
Hung Tran;Carol Leong;Weng Keong Loke;Con Dogovski;Chun-Qiang Liu - 通讯作者:
Chun-Qiang Liu
Hung Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hung Tran', 18)}}的其他基金
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Geometry of Surfaces and Four-Dimensional Manifolds
曲面几何和四维流形
- 批准号:
2104988 - 财政年份:2021
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Viscosity Solutions: Beyond Well-Posedness Theory
粘度解决方案:超越适定理论
- 批准号:
1664424 - 财政年份:2017
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1615944 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1361236 - 财政年份:2014
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
相似国自然基金
基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
- 批准号:52006188
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
模式复用与MIMO相融合的Front-haul传输损伤及其抑制研究
- 批准号:61671227
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
VWF分子A3区“front face”域基因突变对VWF蛋白代谢和功能的影响
- 批准号:81100347
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
- 批准号:11176015
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:联合基金项目
多流体ALE模式下Front tracking 界面追踪法研究
- 批准号:10901022
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Labour Market and Health Dynamics of Australia's Front Line Workers
劳动力市场和澳大利亚一线工人的健康动态
- 批准号:
DP230101350 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Projects
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
- 批准号:
2346635 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
- 批准号:
EP/Y028473/1 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Fellowship
EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
- 批准号:
2332167 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Study on water mass mixing and nutrients cycle through the polar front and Tsushima Warm Current in the southern Sea of Japan
日本海南部极锋和对马暖流的水团混合和营养物循环研究
- 批准号:
23K13168 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Equipping social workers on the front line: The child welfare and addiction specialist fellowship program
为前线的社会工作者提供装备:儿童福利和成瘾专家奖学金计划
- 批准号:
10682109 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
- 批准号:
2239207 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
SBIR Phase II: Analog front end (AFE) platform for lightweight, long-term, cortical monitoring
SBIR 第二阶段:用于轻量级、长期皮质监测的模拟前端 (AFE) 平台
- 批准号:
2317290 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Cooperative Agreement
Eye head coordination in front tuck somersault
前翻筋斗眼头协调
- 批准号:
23K10727 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)