Geometry of Surfaces and Four-Dimensional Manifolds
曲面几何和四维流形
基本信息
- 批准号:2104988
- 负责人:
- 金额:$ 21.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to explore critical points of natural geometric functionals, particularly in the fields of minimal surfaces with boundaries and four-dimensional manifolds. These concepts arise naturally such as when one dips a wireframe into a soap solution, forming a soap film, which is an example of a minimal surface. Similarly, the world we are living in can be modeled as a four-dimensional manifold with three spatial and one time directions. Thus, advancements in this area will have applications in physics, biology, and applied sciences. As a consequence, the project's objective is to advance knowledge by exploring the following research directions. The project also includes mentoring of students (at both the undergraduate and graduate levels) and the organization of a mini-school aimed at broadening participation of under-represented minorities in STEM fields.The first research direction in this project aims to study stationary surfaces with boundaries, examining the first and second variations to draw out classification and uniqueness results. In particular, motivated by Lawson and Willmore's conjectures for minimal surfaces in a sphere, the PI will conduct a parallel study for free boundary minimal surfaces in a ball. By introducing creative ideas (Jacobi-Steklov eigenvalue, interpreting constraints as linear functionals), the PI will develop an approach that gives a framework for further investigations. The second thrust studies the connection between the geometry and topology of a four-dimensional manifold. The PI aims to classify these manifolds under natural conditions, particularly resolving a differentiable sphere conjecture of the second kind and providing insights on one of Hopf's conjectures and a folklore conjecture about Einstein metrics. The guiding principle is that the Hodge star operator gives rise to several elliptic identities in dimension four. The project also includes several mentoring activities as well as impactful activities aimed at broadening participation of under-represented minorities in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是探索自然几何泛函的临界点,特别是在具有边界的极小曲面和四维流形领域。这些概念是自然产生的,例如当人们将线框浸入肥皂溶液中时,形成肥皂膜,这是最小表面的一个例子。类似地,我们生活的世界可以被建模为具有三个空间方向和一个时间方向的四维流形。因此,这一领域的进展将在物理学、生物学和应用科学中得到应用。 因此,该项目的目标是通过探索以下研究方向来推进知识。 该项目还包括对学生(本科生和研究生)进行辅导,并组织一个小型学校,旨在扩大在STEM领域代表性不足的少数群体的参与。该项目的第一个研究方向旨在研究有边界的静止表面,检查第一和第二种变化,以得出分类和独特性结果。特别是,受Lawson和Willmore的球面极小曲面的启发,PI将对球中的自由边界极小曲面进行平行研究。通过引入创造性的想法(Jacobi-Steklov特征值,将约束解释为线性泛函),PI将开发一种方法,为进一步的研究提供一个框架。 第二个推力研究四维流形的几何和拓扑之间的联系。 PI的目的是在自然条件下对这些流形进行分类,特别是解决第二类可微球猜想,并提供对Hopf的一个猜想和关于爱因斯坦度量的民间猜想的见解。指导原则是霍奇星星运营商产生了几个椭圆身份在第四个维度。 该项目还包括几项指导活动以及旨在扩大STEM领域代表性不足的少数群体参与的有影响力的活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Morse index with constraints: An abstract formulation
关于带有约束的莫尔斯指数:一个抽象的表述
- DOI:10.1016/j.jmaa.2023.127317
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Tran, Hung;Zhou, Detang
- 通讯作者:Zhou, Detang
Curvature of the second kind and a conjecture of Nishikawa
第二类曲率与西川猜想
- DOI:10.4171/cmh/545
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Cao, Xiaodong;Gursky, Matthew;Tran, Hung
- 通讯作者:Tran, Hung
On the Morse Index with Constraints for Capillary Surfaces
- DOI:10.1007/s12220-022-01135-3
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Hung Tran;Detang Zhou
- 通讯作者:Hung Tran;Detang Zhou
Stationary surfaces with boundaries
有边界的静止表面
- DOI:10.1007/s10455-022-09850-4
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Gruber, Anthony;Toda, Magdalena;Tran, Hung
- 通讯作者:Tran, Hung
FIRST STABILITY EIGENVALUE OF SINGULAR HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPHERES
球内平均曲率恒定的奇异超曲面的第一稳定特征值
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Juncheol, Pyo;Nguyen, Dung;Tran, Hung
- 通讯作者:Tran, Hung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung Tran其他文献
Simulating Population Protocols in Sub-Constant Time per Interaction
在每次交互的次恒定时间内模拟群体协议
- DOI:
10.4230/lipics.esa.2020.16 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Berenbrink;David Hammer;Dominik Kaaser;U. Meyer;M. Penschuck;Hung Tran - 通讯作者:
Hung Tran
Terrestrial Wireless Networks Based on Standard 2G and 3G Technologies
基于标准2G和3G技术的地面无线网络
- DOI:
10.1002/9781119692478.ch2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thanh Khac Vo;Phu Huu Bui;Hung Tran - 通讯作者:
Hung Tran
On isometry groups of gradient Ricci solitons
梯度Ricci孤子的等距群
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ha Tuan Dung;Hung Tran - 通讯作者:
Hung Tran
Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples
- DOI:
10.1016/j.toxicon.2008.07.008 - 发表时间:
2008-09-15 - 期刊:
- 影响因子:
- 作者:
Hung Tran;Carol Leong;Weng Keong Loke;Con Dogovski;Chun-Qiang Liu - 通讯作者:
Chun-Qiang Liu
Meaningful Recovery Using Visual Therapy in a Patient with Balint Syndrome
- DOI:
10.1016/j.apmr.2015.08.350 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Roshni Ranjit;Imelda Llanos;Hung Tran - 通讯作者:
Hung Tran
Hung Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hung Tran', 18)}}的其他基金
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
CAREER: Front Propagations and Viscosity Solutions
职业:前沿传播和粘度解决方案
- 批准号:
1843320 - 财政年份:2019
- 资助金额:
$ 21.19万 - 项目类别:
Continuing Grant
Viscosity Solutions: Beyond Well-Posedness Theory
粘度解决方案:超越适定理论
- 批准号:
1664424 - 财政年份:2017
- 资助金额:
$ 21.19万 - 项目类别:
Continuing Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1615944 - 财政年份:2015
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1361236 - 财政年份:2014
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346686 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
- 批准号:
2346687 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
- 批准号:
2350344 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Understanding Material Interactions and Effects on Polymicrobial Communities at Surfaces
了解材料相互作用和对表面多种微生物群落的影响
- 批准号:
BB/Y512412/1 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Training Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
- 批准号:
EP/Y036727/1 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Research Grant
Atomic-Scale Engineering of Bioactive Organic Molecules on Surfaces
表面生物活性有机分子的原子尺度工程
- 批准号:
DP240100464 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Discovery Projects
Symmetric representation and the categorification of cluster structure on non-orientable surfaces
不可定向表面簇结构的对称表示和分类
- 批准号:
24K06666 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 21.19万 - 项目类别:
Research Grant