Viscosity Solutions: Beyond Well-Posedness Theory
粘度解决方案:超越适定理论
基本信息
- 批准号:1664424
- 负责人:
- 金额:$ 16.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns some nonlinear partial differential equations that appear naturally in physics, the social sciences, and engineering and that arise, for example, in the study of composite materials, combustion, game theory, traffic flow, and optimization. The equations considered have deep connections with a host of other areas of mathematics, including the calculus of variations, differential games, dynamical systems, geometry, homogenization theory, inverse problems, and optimal control theory. The main goal of the project is to discover new underlying principles and general methods to understand the properties of solutions of the differential equations under investigation. One of the key objects of the research is homogenization theory, in which the models (say, of physical or social phenomena) are set in heterogeneous media and have many parameters varying on a small scale. If one zooms out and looks at the macroscopic scale, one often sees a simple effective (averaging) behavior. To make practical use of the models, it is extremely important to understand deeply the qualitative and quantitative aspects of this effective behavior.The project has two overarching themes: (i) going beyond mere well-posedness in order to understand fine properties of both the limiting process and the effective equation in homogenization theory (e.g., shape of the effective Hamiltonian, optimal rate of convergence), and (ii) advancing knowledge of the duality method and fully nonlinear elliptic equations (e.g., representation formulas of solutions, the vanishing discount problem, regularity). The principal investigator and his collaborators have recently developed new approaches in these (and related) topical areas, approaches that have already provided solutions to some open problems. These methods are expected to be developed further in this project, thereby bringing fresh perspectives on and insights into the field of viscosity solutions.
该项目涉及一些自然出现在物理学,社会科学和工程学中的非线性偏微分方程,例如,在复合材料,燃烧,博弈论,交通流和优化的研究中出现。所考虑的方程与许多其他数学领域有着深刻的联系,包括变分法、微分对策、动力系统、几何、均匀化理论、反问题和最优控制理论。该项目的主要目标是发现新的基本原理和一般方法,以了解所研究的微分方程解的性质。研究的一个关键对象是均匀化理论,其中模型(例如,物理或社会现象)设置在异质介质中,并且具有许多在小尺度上变化的参数。如果我们缩小并观察宏观尺度,我们通常会看到一个简单的有效(平均)行为。为了实际应用这些模型,深入理解这种有效行为的定性和定量方面是极其重要的。该项目有两个首要主题:(i)超越单纯的适定性,以理解均匀化理论中极限过程和有效方程的精细性质(例如,有效哈密顿量的形状,最佳收敛速率),以及(ii)推进对偶方法和完全非线性椭圆方程的知识(例如,解的表示公式,消失折扣问题,正则性)。首席研究员和他的合作者最近在这些(和相关)主题领域开发了新的方法,这些方法已经为一些开放的问题提供了解决方案。这些方法有望在本项目中得到进一步发展,从而为粘度解决方案领域带来新的视角和见解。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large time behavior for a Hamilton-Jacobi equation in a critical Coagulation-Fragmentation model
临界凝固-破碎模型中 Hamilton-Jacobi 方程的大时间行为
- DOI:10.4310/cms.2021.v19.n2.a8
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Mitake, Hiroyoshi;Tran, Hung Vinh;Van, Truong-Son
- 通讯作者:Van, Truong-Son
A rigidity result for effective Hamiltonians with 3-mode periodic potentials
- DOI:10.1016/j.aim.2018.06.017
- 发表时间:2017-07
- 期刊:
- 影响因子:1.7
- 作者:H. Tran;Yifeng Yu
- 通讯作者:H. Tran;Yifeng Yu
A Note on Nonconvex Mean Field Games
关于非凸平均场博弈的注解
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0.7
- 作者:Tran, Hung V.
- 通讯作者:Tran, Hung V.
Min–max formulas and other properties of certain classes of nonconvex effective Hamiltonians
某些类别的非凸有效哈密顿量的最小–最大公式和其他属性
- DOI:10.1007/s00208-017-1601-8
- 发表时间:2017
- 期刊:
- 影响因子:1.4
- 作者:Qian, Jianliang;Tran, Hung V.;Yu, Yifeng
- 通讯作者:Yu, Yifeng
On uniqueness sets of additive eigenvalue problems and applications
- DOI:10.1090/proc/14152
- 发表时间:2018-01
- 期刊:
- 影响因子:1
- 作者:Hiroyoshi Mitake;H. Tran
- 通讯作者:Hiroyoshi Mitake;H. Tran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung Tran其他文献
Simulating Population Protocols in Sub-Constant Time per Interaction
在每次交互的次恒定时间内模拟群体协议
- DOI:
10.4230/lipics.esa.2020.16 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
P. Berenbrink;David Hammer;Dominik Kaaser;U. Meyer;M. Penschuck;Hung Tran - 通讯作者:
Hung Tran
On isometry groups of gradient Ricci solitons
梯度Ricci孤子的等距群
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ha Tuan Dung;Hung Tran - 通讯作者:
Hung Tran
Terrestrial Wireless Networks Based on Standard 2G and 3G Technologies
基于标准2G和3G技术的地面无线网络
- DOI:
10.1002/9781119692478.ch2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thanh Khac Vo;Phu Huu Bui;Hung Tran - 通讯作者:
Hung Tran
Meaningful Recovery Using Visual Therapy in a Patient with Balint Syndrome
- DOI:
10.1016/j.apmr.2015.08.350 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
Roshni Ranjit;Imelda Llanos;Hung Tran - 通讯作者:
Hung Tran
Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples
- DOI:
10.1016/j.toxicon.2008.07.008 - 发表时间:
2008-09-15 - 期刊:
- 影响因子:
- 作者:
Hung Tran;Carol Leong;Weng Keong Loke;Con Dogovski;Chun-Qiang Liu - 通讯作者:
Chun-Qiang Liu
Hung Tran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hung Tran', 18)}}的其他基金
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Geometry of Surfaces and Four-Dimensional Manifolds
曲面几何和四维流形
- 批准号:
2104988 - 财政年份:2021
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
CAREER: Front Propagations and Viscosity Solutions
职业:前沿传播和粘度解决方案
- 批准号:
1843320 - 财政年份:2019
- 资助金额:
$ 16.8万 - 项目类别:
Continuing Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1615944 - 财政年份:2015
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Some new approaches for the study of properties of viscosity solutions
研究粘度溶液性质的一些新方法
- 批准号:
1361236 - 财政年份:2014
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Hyperpolarised portable NMR for targeted analytical solutions beyond the laboratory (HYPERSOL)
超极化便携式 NMR,用于实验室以外的目标分析解决方案 (HYPERSOL)
- 批准号:
EP/X03528X/1 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Research Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Bench, Bedside, Business, and Beyond: innovative solutions for AMR diagnostics
实验室、床边、商业及其他:AMR 诊断的创新解决方案
- 批准号:
MR/X036936/1 - 财政年份:2023
- 资助金额:
$ 16.8万 - 项目类别:
Research Grant
Machine Learning-Aided Solutions for Efficient Planning, Design, Operation and Adaptation of Beyond 5G Wireless Networks
用于高效规划、设计、运营和适应超 5G 无线网络的机器学习辅助解决方案
- 批准号:
RGPIN-2022-03798 - 财政年份:2022
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Design of Resource Allocation and Orchestration Solutions Towards Building Beyond 5G Networks
高效且可扩展的资源分配和编排解决方案设计,构建超越 5G 的网络
- 批准号:
RGPIN-2020-06622 - 财政年份:2022
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Design of Resource Allocation and Orchestration Solutions Towards Building Beyond 5G Networks
高效且可扩展的资源分配和编排解决方案设计,构建超越 5G 的网络
- 批准号:
RGPIN-2020-06622 - 财政年份:2021
- 资助金额:
$ 16.8万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Small: Beyond-5G Extreme Mobility: Issues and Solutions
合作研究:CNS 核心:小型:超越 5G 极限移动性:问题与解决方案
- 批准号:
2008026 - 财政年份:2020
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Beyond-5G Extreme Mobility: Issues and Solutions
合作研究:CNS 核心:小型:超越 5G 极限移动性:问题与解决方案
- 批准号:
2008824 - 财政年份:2020
- 资助金额:
$ 16.8万 - 项目类别:
Standard Grant
Reproducibility in health intervention research and beyond: addressing the challenges and developing innovative solutions
健康干预研究及其他领域的可重复性:应对挑战并开发创新解决方案
- 批准号:
ES/V011030/1 - 财政年份:2020
- 资助金额:
$ 16.8万 - 项目类别:
Fellowship