RUI: Statistical Properties of Nonequilibrium and Extended Dynamical Systems

RUI:非平衡和扩展动力系统的统计特性

基本信息

  • 批准号:
    1362420
  • 负责人:
  • 金额:
    $ 16.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The research funded by this grant will focus in large part on the study of mathematical models of particle systems with collision interactions that are central to the field of statistical mechanics, and in particular to our understanding of chaotic dynamical systems. Such systems play an important role in the study of non-equilibrium dynamics, which model, for example, the motion of particles subjected to external forces or nonelastic collisions. Other examples of non-equilbrium dynamics include systems in which mass or energy is allowed to escape, and large-scale systems of smaller interacting components which exchange mass or energy. Such systems have been used in theoretical physics and chemical engineering to model atom traps, explore mechanisms for heat conduction in solids and investigate metastability in molecular processes. Rigorous mathematical results obtained during the course of this grant will aid in the interpretation of these studies as well as suggest new directions of inquiry. This grant also supports the involvement of undergraduates in mathematics research. Using the highly visual nature and physical motivation of the problems outlined above, the author will recruit undergraduate students to work on these topics during each summer funded by the grant. Special emphasis will be given to recruiting students from underrepresented groups in research mathematics. Students will disseminate results of their research at poster sessions and through publication in undergraduate or research journals, as appropriate. By stimulating interest in research careers in mathematics and creating a peer community supportive of that interest, the grant will contribute to the important goal of integrating research and education.Much research in dynamical systems focuses on closed systems in which the dynamics are self-contained. In many modeling situations, however, such a global view is not possible and it becomes necessary to study local systems that are influenced by other unknown systems, possibly on different scales. Such considerations motivate many of the systems to be studied during the course of this grant: systems in which mass or energy may enter or exit through deterministic or random mechanisms. The grant is organized around three specific projects: The first project investigates the statistical properties of both classical and non-equilibrium particle systems, which constitute an important class of models from statistical mechanics as described above; the second concerns open systems, which are inspired by physical models in which mass or energy is allowed to escape; the third project investigates the behavior of dynamical systems which are comprised of (possibly infinitely many) smaller components linked together, with orbits or energy allowed to pass between them. When focused on one component at a time, such systems generalize the discussion of open systems in a natural way by allowing both entry and escape. The intellectual merit of the research activity funded by the grant stems from the depth of the analytical tools to be developed as well as the complexity and variety of the systems under consideration. Using his recent work concerning the spectral decomposition of the transfer operator for dispersing particle systems, the author will investigate both equilibrium and non-equilibrium models from statistical mechanics. This approach is expected to resolve a longstanding conjecture by Bowen and Ruelle regarding the continuous time flow and to provide rigorous analysis of physically important quantities such as entropy production. A second tool the author will use is the construction of Markov extensions (a generalization of finite and countable Markov partitions), which make no Markovian assumptions on the dynamics and are widely applicable to nonuniformly hyperbolic systems, including Hénon maps and a wide variety of particle systems. The application of such tools to systems out of equilibrium, open coupled map lattices and extended systems will represent significant advances in the study of such systems. Efforts to understand these tools in one context strengthens them and aids in their application to other areas of mathematics. Their intellectual interest is enhanced by the application of these ideas to resolve problems posed and approached formally in the physics literature.
该研究资助将集中在很大程度上研究粒子系统的数学模型与碰撞相互作用是统计力学领域的核心,特别是我们对混沌动力学系统的理解。 这种系统在非平衡动力学的研究中起着重要的作用,例如,非平衡动力学模拟了受到外力或非弹性碰撞的粒子的运动。 非平衡动力学的其他例子包括允许质量或能量逃逸的系统,以及交换质量或能量的较小相互作用组件的大规模系统。 这种系统已被用于理论物理和化学工程中,以模拟原子陷阱,探索固体中的热传导机制,并研究分子过程中的亚稳态。 严格的数学结果在此过程中获得的补助金将有助于这些研究的解释,以及提出新的调查方向。 该补助金还支持本科生参与数学研究。 利用上述问题的高度视觉性和物理动机,作者将招募本科生在每年夏季由赠款资助的这些主题的工作。 将特别强调从研究数学中代表性不足的群体中招收学生。学生将在海报会议上传播他们的研究成果,并通过在本科或研究期刊上发表,视情况而定。 通过激发人们对数学研究事业的兴趣,并建立一个支持这种兴趣的同行社区,这笔赠款将有助于实现研究与教育相结合的重要目标。 然而,在许多建模情况下,这样的全局视图是不可能的,并且有必要研究受其他未知系统(可能在不同尺度上)影响的局部系统。这样的考虑促使许多系统在这个过程中进行研究:系统中,质量或能量可以通过确定性或随机机制进入或退出。 该资助围绕三个具体项目进行:第一个项目研究经典和非平衡粒子系统的统计特性,这些系统构成了上述统计力学的一类重要模型;第二个项目涉及开放系统,其灵感来自允许质量或能量逃逸的物理模型;第三个项目研究动力系统的行为,这些系统由(可能是无限多个)连接在一起的较小组件组成,允许轨道或能量在它们之间传递。当一次只关注一个组件时,这样的系统通过允许进入和退出,以一种自然的方式概括了开放系统的讨论。 由赠款资助的研究活动的智力价值源于有待开发的分析工具的深度以及正在考虑的系统的复杂性和多样性。利用他最近关于分散粒子系统的转移算子的谱分解的工作,作者将从统计力学研究平衡和非平衡模型。 这种方法有望解决Bowen和Ruelle关于连续时间流的长期猜想,并对物理上重要的量(如熵产生)进行严格的分析。 作者将使用的第二个工具是马尔可夫扩张的构造(有限和可数马尔可夫划分的推广),它对动力学没有马尔可夫假设,并且广泛适用于非一致双曲系统,包括Hénon映射和各种粒子系统。这些工具在非平衡系统、开耦合映象格子和扩展系统中的应用将代表这类系统研究的重大进展。努力理解这些工具在一个方面加强他们和艾滋病在他们的应用到其他领域的数学。 通过应用这些思想来解决物理学文献中正式提出和处理的问题,提高了他们的智力兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Demers其他文献

A trichotomy for hitting times and escape rates for a class of unimodal maps
一类单峰地图的命中时间和逃逸率的三分法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Demers;Mike Todd
  • 通讯作者:
    Mike Todd
An audiometric study of the effects of paraspinal stimulation on hearing acuity in human subjects understanding the Harvey Lillard phenomenon
  • DOI:
    10.1186/s12998-014-0039-2
  • 发表时间:
    2014-11-19
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Mark Demers;Zehra Gajic;Everett Gerretsen;Brian Budgell
  • 通讯作者:
    Brian Budgell

Mark Demers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Demers', 18)}}的其他基金

RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
  • 批准号:
    2350079
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
RUI: Equilibrium and Nonequilibrium Dynamics for Systems of Physical Origin
RUI:物理起源系统的平衡和非平衡动力学
  • 批准号:
    2055070
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
RUI: Nonuniformly Hyperbolic Dynamical Systems out of Equilibrium
RUI:不平衡的非均匀双曲动力系统
  • 批准号:
    1800321
  • 财政年份:
    2018
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
RUI: Open, coupled and extended dynamical systems with nonuniform hyperbolicity
RUI:具有非均匀双曲性的开放、耦合和扩展动力系统
  • 批准号:
    1101572
  • 财政年份:
    2011
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Topics in Dynamical Systems: Open Systems, Coupled Systems and Discretization
动力系统主题:开放系统、耦合系统和离散化
  • 批准号:
    0801139
  • 财政年份:
    2008
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant

相似海外基金

Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
  • 批准号:
    22H00748
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The impact of ecological dynamics and statistical properties in fisheries data on the sustainability of fish populations and harvest
渔业数据中的生态动态和统计特性对鱼类种群和收获可持续性的影响
  • 批准号:
    RGPIN-2019-05838
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
Rigid Structures and Statistical Properties of Smooth Systems
光滑系统的刚性结构和统计特性
  • 批准号:
    2154796
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Statistical analysis of biomechanical properties and thickness of infant cranial bones
婴儿颅骨生物力学特性和厚度的统计分析
  • 批准号:
    22K10603
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic Properties and Statistical Inference for Regularly Varying Time Series
规律变化的时间序列的概率性质和统计推断
  • 批准号:
    RGPIN-2018-04156
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Statistical Plasticity for Reconstruction of Macroscopic Material Properties Induced by Microscopic Fluctuations
用于重建微观波动引起的宏观材料性能的统计塑性的发展
  • 批准号:
    21K03745
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic Properties and Statistical Inference for Regularly Varying Time Series
规律变化的时间序列的概率性质和统计推断
  • 批准号:
    RGPIN-2018-04156
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding statistical properties of extreme phenomena based on the burst mechanism and its application to prediction
基于突发机制理解极端现象的统计特性及其在预测中的应用
  • 批准号:
    21K17825
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The impact of ecological dynamics and statistical properties in fisheries data on the sustainability of fish populations and harvest
渔业数据中的生态动态和统计特性对鱼类种群和收获可持续性的影响
  • 批准号:
    RGPIN-2019-05838
  • 财政年份:
    2021
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
The impact of ecological dynamics and statistical properties in fisheries data on the sustainability of fish populations and harvest
渔业数据中的生态动态和统计特性对鱼类种群和收获可持续性的影响
  • 批准号:
    RGPIN-2019-05838
  • 财政年份:
    2020
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了