RUI: Equilibrium and Nonequilibrium Dynamics for Systems of Physical Origin

RUI:物理起源系统的平衡和非平衡动力学

基本信息

  • 批准号:
    2055070
  • 负责人:
  • 金额:
    $ 21.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In dynamical systems, systems that change with time such as planetary motion, much of the research is focused on closed systems in which the dynamics are self-contained. In many modeling situations, however, such a global view is not possible and it becomes necessary to study systems that are influenced by other unknown systems, possibly on different scales. This project will investigate properties of chaotic dynamical systems that are out of equilibrium, either due to the application of external forces or because mass or energy is allowed to escape. Systems to be studied during the course of this project include systems in which mass or energy may enter or exit through deterministic or random mechanisms, and large-scale systems of smaller interacting components that exchange mass or energy. These problems are strongly motivated by connections with statistical mechanics and seek to advance our understanding of fundamental questions related to energy transport and diffusion. This project will also support the involvement of undergraduate students in mathematics research. The highly visual nature and physical motivation of the problems outlined above will enable the principal investigator to recruit undergraduate students to participate in related research projects during the course of the project. Special emphasis will be given to recruiting students from underrepresented groups in research mathematics. Students will disseminate results of their research via poster sessions, conference presentations and publications in peer-reviewed journals. By stimulating interest in research careers in mathematics and creating a peer community supportive of that interest, the grant will contribute to the important goal of integrating research and education.Motivated by the problems outlined above, this project is organized around three specific projects: The first project investigates the statistical and thermodynamic properties of both classical and non-equilibrium particle systems with collision interactions, an important class of models from statistical mechanics; the second concerns open systems, which relate on the one hand to physical systems in which mass or energy is allowed to escape, and on the other to the study of metastable states; the third project generalizes open systems to include linked and extended dynamical systems comprised of two or more components that exchange mass or energy through deterministic or random mechanisms. Important examples include the aperiodic Lorentz gas and mechanical models of heat conduction. The investigator will bring to bear several analytical techniques that he has been instrumental in developing for these classes of systems, including his recent work concerning the spectral decomposition of transfer operators for dispersing particle systems, contractions in projective cones due to Birkhoff, and the construction of adapted Markov extensions (a generalization of Markov partitions). None of these techniques require Markovian assumptions on the dynamics, making them widely applicable to a wide variety of nonuniformly hyperbolic and physically important systems. The application of these techniques to central models from equilibrium and non-equilibrium statistical mechanics will represent significant advances in the study of such systems. Efforts to understand these tools in one context strengthens them and aids in their application to other areas of mathematics. Their intellectual interest is enhanced by the application of these ideas to resolve problems posed and approached formally in the physics literature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在动力系统中,随着时间变化的系统,如行星运动,大部分研究都集中在封闭系统中,其中的动力学是独立的。然而,在许多建模情况下,这样的全局视图是不可能的,并且有必要研究可能在不同尺度上受到其他未知系统影响的系统。这个项目将研究混沌动力系统的性质,这些系统由于外力的作用或质量或能量的逃逸而失去平衡。 在本项目过程中要研究的系统包括质量或能量可以通过确定性或随机机制进入或退出的系统,以及交换质量或能量的较小相互作用组件的大规模系统。 这些问题的强烈动机与统计力学的联系,并寻求推进我们的理解有关的基本问题的能量传输和扩散。 该项目还将支持本科生参与数学研究。 上述问题的高度视觉性和物理动机将使主要研究者能够在项目进行期间招募本科生参与相关的研究项目。 将特别强调从研究数学中代表性不足的群体中招收学生。 学生将通过海报会议,会议演示和同行评审期刊上的出版物传播他们的研究成果。 通过激发对数学研究事业的兴趣,并建立一个支持这种兴趣的同行社区,该赠款将有助于实现研究与教育相结合的重要目标。受上述问题的激励,该项目围绕三个具体项目组织:第一个项目研究具有碰撞相互作用的经典和非平衡粒子系统的统计和热力学性质,一类重要的模型从统计力学;第二个关注开放系统,这涉及到一方面的物理系统中,质量或能量是允许逃逸,另一方面的亚稳态的研究;第三个项目将开放系统概括为包括由两个或多个组件组成的链接和扩展动力系统,这些组件通过确定性或随机性交换质量或能量机制等 重要的例子包括非周期性洛伦兹气体和热传导的力学模型。 调查员将承担几个分析技术,他一直在开发这些类的系统,包括他最近的工作有关的频谱分解的转移运营商分散粒子系统,收缩投影锥由于伯克霍夫,和建设适应马尔可夫扩展(马尔可夫分区的推广)。 这些技术都不需要马尔可夫假设的动力学,使它们广泛适用于各种各样的非一致双曲和物理上重要的系统。 将这些技术应用于平衡和非平衡统计力学的中心模型,将代表这类系统研究的重大进展。 努力理解这些工具在一个方面加强他们和艾滋病在他们的应用到其他领域的数学。 通过应用这些思想来解决物理学文献中正式提出和处理的问题,他们的智力兴趣得到了提高。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamic formalism for dispersing billiards
分散台球的热力学形式
  • DOI:
    10.3934/jmd.2022013
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Baladi, Viviane;Demers, Mark F.
  • 通讯作者:
    Demers, Mark F.
Projective Cones for Sequential Dispersing Billiards
  • DOI:
    10.1007/s00220-023-04657-1
  • 发表时间:
    2023-02-23
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Demers, Mark F. F.;Liverani, Carlangelo
  • 通讯作者:
    Liverani, Carlangelo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Demers其他文献

A trichotomy for hitting times and escape rates for a class of unimodal maps
一类单峰地图的命中时间和逃逸率的三分法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark Demers;Mike Todd
  • 通讯作者:
    Mike Todd
An audiometric study of the effects of paraspinal stimulation on hearing acuity in human subjects understanding the Harvey Lillard phenomenon
  • DOI:
    10.1186/s12998-014-0039-2
  • 发表时间:
    2014-11-19
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Mark Demers;Zehra Gajic;Everett Gerretsen;Brian Budgell
  • 通讯作者:
    Brian Budgell

Mark Demers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Demers', 18)}}的其他基金

RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
  • 批准号:
    2350079
  • 财政年份:
    2024
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
RUI: Nonuniformly Hyperbolic Dynamical Systems out of Equilibrium
RUI:不平衡的非均匀双曲动力系统
  • 批准号:
    1800321
  • 财政年份:
    2018
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
RUI: Statistical Properties of Nonequilibrium and Extended Dynamical Systems
RUI:非平衡和扩展动力系统的统计特性
  • 批准号:
    1362420
  • 财政年份:
    2014
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
RUI: Open, coupled and extended dynamical systems with nonuniform hyperbolicity
RUI:具有非均匀双曲性的开放、耦合和扩展动力系统
  • 批准号:
    1101572
  • 财政年份:
    2011
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
Topics in Dynamical Systems: Open Systems, Coupled Systems and Discretization
动力系统主题:开放系统、耦合系统和离散化
  • 批准号:
    0801139
  • 财政年份:
    2008
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant

相似海外基金

Einstein-de Haas probes of equilibrium and nonequilibrium magnetism and superconductivity
爱因斯坦-德哈斯对平衡和非平衡磁性和超导性的探索
  • 批准号:
    RGPIN-2021-02762
  • 财政年份:
    2022
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Experimental Tests of Nonequilibrium Thermodynamics Beyond the Onsager Relation: Nonlinear and Far-From-Equilibrium Thermoelectrics
目标:超越 Onsager 关系的非平衡热力学实验测试:非线性和远离平衡热电学
  • 批准号:
    2206888
  • 财政年份:
    2022
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
Einstein-de Haas probes of equilibrium and nonequilibrium magnetism and superconductivity
爱因斯坦-德哈斯对平衡和非平衡磁性和超导性的探索
  • 批准号:
    RGPIN-2021-02762
  • 财政年份:
    2021
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Grants Program - Individual
Nonequilibrium and equilibrium thermal properties of polymer crystallization and melting examined by ultra-fast scan calorimetry and temperature jump
通过超快扫描量热法和温度跳跃检查聚合物结晶和熔化的非平衡和平衡热性能
  • 批准号:
    16H04206
  • 财政年份:
    2016
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis on equilibrium/nonequilibrium statistical mechanics by theory of operator algebra
用算子代数理论分析平衡/非平衡统计力学
  • 批准号:
    21740124
  • 财政年份:
    2009
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
AMC-SS: Equilibrium and Nonequilibrium Statistical Mechanics Applied to Reduced Descriptions of Complex Systems
AMC-SS:平衡和非平衡统计力学应用于复杂系统的简化描述
  • 批准号:
    0604071
  • 财政年份:
    2006
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Standard Grant
Equilibrium and nonequilibrium phenomena in complex systems
复杂系统中的平衡和非平衡现象
  • 批准号:
    41963-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Grants Program - Individual
Equilibrium and nonequilibrium phenomena in complex systems
复杂系统中的平衡和非平衡现象
  • 批准号:
    41963-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Grants Program - Individual
Equilibrium and nonequilibrium studies of interfaces in soft-condensed matter
软凝聚态物质界面的平衡和非平衡研究
  • 批准号:
    105732-1998
  • 财政年份:
    2004
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Grants Program - Individual
Fluid properties and chaotic dynamics in equilibrium and nonequilibrium states
平衡和非平衡状态下的流体特性和混沌动力学
  • 批准号:
    DP0449810
  • 财政年份:
    2004
  • 资助金额:
    $ 21.41万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了