RUI: Nonuniformly Hyperbolic Dynamical Systems out of Equilibrium
RUI:不平衡的非均匀双曲动力系统
基本信息
- 批准号:1800321
- 负责人:
- 金额:$ 24.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds research dedicated to the study of chaotic dynamical systems out of equilibrium. Much research in dynamical systems focuses on closed systems in which the dynamics are self-contained. In many modeling situations, however, such a global view is not possible and it becomes necessary to study local systems that are influenced by other unknown systems, possibly on different scales. These considerations motivate many of the systems to be studied during the course of this award: systems in which mass or energy may enter or exit through deterministic or random mechanisms, and large-scale systems of smaller interacting components that exchange mass or energy. Such systems have been used in theoretical physics and chemical engineering to model atom traps, explore mechanisms for heat conduction in solids and investigate metastability in molecular processes. Rigorous mathematical results obtained during the course of this award will aid in the interpretation of these studies as well as suggest new directions of inquiry. This award also supports the involvement of undergraduates in mathematics research. Using the highly visual nature and physical motivation of the problems outlined above, the PI will recruit undergraduate students to work on these topics during each summer funded by the award. Special emphasis will be given to recruiting students from underrepresented groups in research mathematics. Students will disseminate results of their research via poster sessions, conference presentations and publications in peer-reviewed journals. By stimulating interest in research careers in mathematics and creating a peer community supportive of that interest, the award will contribute to the important goal of integrating research and education.Motivated by the problems outlined above, this award is organized around three specific projects: The first project investigates the statistical properties of both classical and non-equilibrium particle systems with collision interactions, an important class of models from statistical mechanics; the second concerns open systems, which relate on the one hand to models of physical systems in which mass or energy is allowed to escape, and on the other to the study of metastable states; the third project concerns the behavior of extended dynamical systems comprised of a finite or infinite number of smaller components linked together, with orbits or energy allowed to pass between them. Important examples include the aperiodic Lorentz gas and mechanical models of heat conduction. Using his recent work concerning spectral decompositions of transfer operators for dispersing particle systems, the PI will investigate equilibrium and non-equilibrium models from statistical mechanics and provide rigorous analysis of physically important quantities such as entropy production. In addition, the PI will adapt and develop techniques using projective cones due to Birkhoff as well as the construction of Markov extensions (a generalization of Markov partitions) to the study of such systems. None of these techniques require Markovian assumptions on the dynamics, making them widely applicable to a wide variety of nonuniformly hyperbolic and physically important systems. The application of these tools to central models from equilibrium and non-equilibrium statistical mechanics will represent significant advances in the study of such systems. Efforts to understand these tools in one context, strengthens them and aids in their application to other areas of mathematics. Their intellectual interest is enhanced by the application of these ideas to resolve problems posed and approached formally in the physics literature.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助致力于研究混沌动力系统的研究。 动力系统的许多研究集中在封闭系统中,其中的动力学是自包含的。 然而,在许多建模情况下,这样的全局视图是不可能的,并且有必要研究受其他未知系统(可能在不同尺度上)影响的局部系统。 这些考虑促使许多系统在这个奖项的过程中进行研究:质量或能量可以通过确定性或随机机制进入或退出的系统,以及交换质量或能量的较小相互作用组件的大规模系统。 这种系统已被用于理论物理和化学工程中,以模拟原子陷阱,探索固体中的热传导机制,并研究分子过程中的亚稳态。 在这个奖项的过程中获得的严格的数学结果将有助于解释这些研究,以及提出新的调查方向。 该奖项还支持本科生参与数学研究。 利用上述问题的高度视觉性和物理动机,PI将在每年夏天招募本科生在该奖项资助的这些主题上工作。 将特别强调从研究数学中代表性不足的群体中招收学生。 学生将通过海报会议,会议演示和同行评审期刊上的出版物传播他们的研究成果。 通过激发人们对数学研究事业的兴趣,并建立一个支持这种兴趣的同行社区,该奖项将有助于实现研究与教育相结合的重要目标。基于上述问题,该奖项围绕三个具体项目组织:第一个项目研究具有碰撞相互作用的经典和非平衡粒子系统的统计特性,一类重要的模型从统计力学;第二个关注开放系统,这涉及到一方面的模型,物理系统中的质量或能量是允许逃逸,另一方面的亚稳态的研究;第三个项目涉及由有限或无限数量的连接在一起的较小组件组成的扩展动力系统的行为,允许轨道或能量在它们之间通过。 重要的例子包括非周期性洛伦兹气体和热传导的力学模型。 利用他最近关于分散粒子系统的转移算子的光谱分解的工作,PI将从统计力学中研究平衡和非平衡模型,并对物理上重要的量(如熵产生)进行严格的分析。 此外,PI将适应和开发技术,使用投影锥由于伯克霍夫以及马尔可夫扩展(马尔可夫分区的推广)的建设,以研究此类系统。 这些技术都不需要马尔可夫假设的动力学,使它们广泛适用于各种各样的非一致双曲和物理上重要的系统。 将这些工具应用于平衡和非平衡统计力学的中心模型,将代表这类系统研究的重大进展。 努力了解这些工具在一个方面,加强他们和艾滋病在其应用到其他领域的数学。 通过应用这些思想来解决物理学文献中正式提出和处理的问题,他们的智力兴趣得到了提高。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamic formalism for dispersing billiards
分散台球的热力学形式
- DOI:10.3934/jmd.2022013
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Baladi, Viviane;Demers, Mark F.
- 通讯作者:Demers, Mark F.
A gentle introduction to anisotropic banach spaces
各向异性巴纳赫空间的简要介绍
- DOI:10.1016/j.chaos.2018.08.028
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Demers, Mark F.
- 通讯作者:Demers, Mark F.
Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps
分段双曲映射最大熵度量的唯一性和指数混合
- DOI:10.3934/dcds.2020217
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:F. Demers, Mark
- 通讯作者:F. Demers, Mark
Asymptotic escape rates and limiting distributions for multimodal maps
多模态映射的渐近逃逸率和极限分布
- DOI:10.1017/etds.2020.14
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:DEMERS, MARK F.;TODD, MIKE
- 通讯作者:TODD, MIKE
Martingale approximations and anisotropic Banach spaces with an application to the time-one map of a Lorentz gas
- DOI:10.1088/1361-6544/ab7d22
- 发表时间:2019-01
- 期刊:
- 影响因子:1.7
- 作者:Mark F. Demers;I. Melbourne;M. Nicol
- 通讯作者:Mark F. Demers;I. Melbourne;M. Nicol
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Demers其他文献
A trichotomy for hitting times and escape rates for a class of unimodal maps
一类单峰地图的命中时间和逃逸率的三分法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mark Demers;Mike Todd - 通讯作者:
Mike Todd
An audiometric study of the effects of paraspinal stimulation on hearing acuity in human subjects understanding the Harvey Lillard phenomenon
- DOI:
10.1186/s12998-014-0039-2 - 发表时间:
2014-11-19 - 期刊:
- 影响因子:2.300
- 作者:
Mark Demers;Zehra Gajic;Everett Gerretsen;Brian Budgell - 通讯作者:
Brian Budgell
Mark Demers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Demers', 18)}}的其他基金
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
- 批准号:
2350079 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
RUI: Equilibrium and Nonequilibrium Dynamics for Systems of Physical Origin
RUI:物理起源系统的平衡和非平衡动力学
- 批准号:
2055070 - 财政年份:2021
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
RUI: Statistical Properties of Nonequilibrium and Extended Dynamical Systems
RUI:非平衡和扩展动力系统的统计特性
- 批准号:
1362420 - 财政年份:2014
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
RUI: Open, coupled and extended dynamical systems with nonuniform hyperbolicity
RUI:具有非均匀双曲性的开放、耦合和扩展动力系统
- 批准号:
1101572 - 财政年份:2011
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Topics in Dynamical Systems: Open Systems, Coupled Systems and Discretization
动力系统主题:开放系统、耦合系统和离散化
- 批准号:
0801139 - 财政年份:2008
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
相似海外基金
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
- 批准号:
2350079 - 财政年份:2024
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Role of Nonuniformly Quantized Actuation in Biological Motion Generation
非均匀量化驱动在生物运动生成中的作用
- 批准号:
1300019 - 财政年份:2013
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Robust reconstruction techniques for nonuniformly sampled data
非均匀采样数据的鲁棒重建技术
- 批准号:
1318894 - 财政年份:2013
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0437404 - 财政年份:2003
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0240097 - 财政年份:2002
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Ergodic Properties of Nonuniformly Hyperbolic Systems
非均匀双曲系统的遍历性质
- 批准号:
0202999 - 财政年份:2002
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
Fundamental Studies of Metal Dispersion for Uniformly and Nonuniformly Distributed Catalysts
均匀和非均匀分布催化剂金属分散的基础研究
- 批准号:
8709019 - 财政年份:1987
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant
An Experimental Study of Nonuniformly Active Catalysts
非均匀活性催化剂的实验研究
- 批准号:
8005713 - 财政年份:1980
- 资助金额:
$ 24.54万 - 项目类别:
Standard Grant