Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
基本信息
- 批准号:1401632
- 负责人:
- 金额:$ 41.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Chemical Measurement and Imaging program, Carlos A. Meriles of the City University of New York (City College) is developing magnetic resonance imaging, or MRI, techniques for a variety of materials, including living tissue, with much higher resolution than is currently available. MRI is a well-known technique in diagnostic medicine but it is limited in the size of structures within the body that can be visualized. Recent advances have made it possible to visualize small organelles within individual cells, but the ability to probe within these organelles still eludes researchers. This project seeks to refine MRI in order to acquire sharp images of ever-smaller objects without going to invasive means. The research is focused on the development of a new type of probe for the MRI device. The probe, consisting of a tiny tip that can be hovered over the sample being studied, is coated with a special kind of diamond in which two adjacent carbon atoms have been removed. A nitrogen atom replaces one of these carbons, but the other is left as an empty hole. The resulting defect, known as a nitrogen vacancy, or NV, defect, responds to variations in the sample being studied by changing the way it spins. The change in spin direction can be detected by light that is emitted from this tip after it has been illuminated by a laser. The emitted light is stronger if the NV center spins around an axis pointing up, but it is weaker if the spin is around an axis pointing down toward the sample. The difference in emitted light in different parts of the sample can be fed into a computer and converted into an image that has a much higher resolution than current MRI images. It is possible that one day this technique may even allow scientists to visualize single atoms within large biological molecules such as proteins. This work is, thus, having a broad impact through the development of tools that will find wide applicability in biological science and medicine. It is having a further broad impact through the development of opportunities for underprivileged students to participate in this research through summer activities at the City College of New York as well as in the host laboratories of partner institutions. The project addresses a current limitation of MRI by exploring a new modality of spin sensing at the nanoscale via the use of a nitrogen vacancy (NV) centers in diamond. Rather than detecting single spins, the strategy focuses on the case where the NV center interacts with small ensembles of spins localized over effective volumes of about a hundred cubic nanometers. Building on the group's recent observation of proton spin noise at the nanoscale, the current goal is to advance NV-based spin sensing via new protocols designed to enhance the information content of the observed signals and broaden the technique's applicability to a more general class of samples. The work has two main thrusts: (1) The first thrust area uses near-surface NVs to probe model sample systems on the diamond surface whose molecular dynamics is changed by inducing a controlled phase transition or by restricting diffusion. Various magnetic resonance schemes are being implemented so as to expose the composition, mobility and, if possible, the structure of the sample molecules via spectroscopic signatures. (2) The second main thrust involves a shift in emphasis from nanoscale spectroscopy to nanoscale imaging via a geometry based on an NV-hosting scanning tip. A unique set of high-purity diamond nanopillars produced via top-down nanofabrication is being combined with an AFM-confocal system to demonstrate T1-weighted spin imaging with nanoscale spatial resolution. Since the presence of additional paramagnetic defects in the diamond host is not necessarily detrimental to sensing, the work has another goal, closely related to the first, to explore alternate protocols conceived to initialize and control the spin bath in a broad set of engineered nanocrystals.
在这个由化学测量和成像计划资助的项目中,卡洛斯A。纽约(City College)的Meriles正在开发磁共振成像(MRI)技术,用于各种材料,包括活组织,其分辨率比目前可用的高得多。MRI是诊断医学中众所周知的技术,但它在可可视化的体内结构的尺寸方面受到限制。最近的进展使人们有可能看到单个细胞内的小细胞器,但在这些细胞器内探测的能力仍然困扰着研究人员。该项目旨在改进MRI,以便在不使用侵入性手段的情况下获得更小物体的清晰图像。该研究的重点是开发一种用于MRI设备的新型探头。探针由一个可以悬浮在被研究样品上方的微小尖端组成,表面涂有一种特殊的金刚石,其中两个相邻的碳原子已经被去除。一个氮原子取代了其中一个碳原子,但另一个碳原子作为空穴留下。由此产生的缺陷,被称为氮空位,或NV,缺陷,通过改变其旋转方式来响应所研究样品的变化。自旋方向的变化可以通过在被激光照射后从该尖端发射的光来检测。如果NV中心围绕指向上的轴旋转,则发射的光更强,但是如果围绕指向下的轴旋转,则发射的光更弱。样品不同部位发出的光的差异可以输入计算机,并转换成比当前MRI图像分辨率高得多的图像。有一天,这项技术甚至可能使科学家能够可视化蛋白质等大型生物分子中的单个原子。因此,这项工作通过开发在生物科学和医学中具有广泛适用性的工具产生了广泛的影响。通过在纽约城市学院以及伙伴机构的主办实验室开展暑期活动,为贫困学生提供参与这项研究的机会,从而产生了进一步的广泛影响。该项目通过在金刚石中使用氮空位(NV)中心探索纳米级自旋传感的新模式,解决了MRI的当前限制。该策略不是检测单个自旋,而是关注NV中心与位于约100立方纳米有效体积上的小自旋集合相互作用的情况。基于该小组最近在纳米尺度上对质子自旋噪声的观察,目前的目标是通过新的协议来推进基于NV的自旋传感,该协议旨在增强所观察到的信号的信息内容,并将该技术的适用性扩展到更一般的样本类别。工作有两个主要方面:(1)第一个方面使用近表面NVs探测金刚石表面上的模型样品系统,其分子动力学通过诱导受控相变或通过限制扩散而改变。正在实施各种磁共振方案,以便通过光谱特征揭示样品分子的组成、迁移率以及(如果可能的话)结构。(2)第二个主要推力涉及重点从纳米级光谱转移到纳米级成像,通过基于NV托管扫描尖端的几何结构。一套独特的高纯度金刚石纳米柱通过自上而下的纳米纤维生产,正在与AFM共聚焦系统相结合,以展示具有纳米级空间分辨率的T1加权自旋成像。由于金刚石基质中存在额外的顺磁性缺陷不一定对传感有害,因此这项工作还有另一个目标,与第一个目标密切相关,即探索替代方案,以初始化和控制广泛的工程纳米晶体中的旋转浴。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Meriles其他文献
Carlos Meriles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Meriles', 18)}}的其他基金
NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
- 批准号:
2223461 - 财政年份:2022
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
- 批准号:
2203904 - 财政年份:2022
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
- 批准号:
2216838 - 财政年份:2022
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
- 批准号:
1914945 - 财政年份:2019
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
- 批准号:
1903839 - 财政年份:2019
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena
MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象
- 批准号:
1726573 - 财政年份:2017
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
- 批准号:
1619896 - 财政年份:2016
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
- 批准号:
1309640 - 财政年份:2013
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
- 批准号:
1314205 - 财政年份:2013
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
- 批准号:
1111410 - 财政年份:2011
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
相似国自然基金
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
基于多模态磁共振探索迟发性运动障碍神经环路结构和功能异常
- 批准号:81100999
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
精神分裂症记忆障碍的脑网络组学研究
- 批准号:91132301
- 批准年份:2011
- 资助金额:350.0 万元
- 项目类别:重大研究计划
基于非血流信号的脑功能成像技术与探测研究
- 批准号:81071149
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
一种新的给药方式--耳后给药治疗内耳疾病的作用途径及机制研究
- 批准号:81070780
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
超顺磁性氧化铁-量子点双显像荷电量可控性正电荷纳米囊泡用于干细胞移植的MRI活体示踪
- 批准号:81071208
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
精神分裂症的影像遗传易感性:基于连接异常假说的家系磁共振成像研究
- 批准号:81000580
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于精神分裂症少突胶质细胞异常假说的影像遗传学研究
- 批准号:81071088
- 批准年份:2010
- 资助金额:40.0 万元
- 项目类别:面上项目
盲人脑网络可塑性的磁共振影像研究
- 批准号:30900476
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
首发偏执型精神分裂症默认网络脑功能研究
- 批准号:30900487
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Continuing Grant
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
- 批准号:
2339202 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant
Magnetic resonance imaging studies of catalytic monoliths
催化整体的磁共振成像研究
- 批准号:
2905857 - 财政年份:2024
- 资助金额:
$ 41.11万 - 项目类别:
Studentship
Establishment of human abdominal aortic aneurysm wall strength prediction model using Ex Vivo Superparamagnetic Iron Oxide–Enhanced Magnetic Resonance Imaging
利用Ex Vivo超顺磁性氧化铁建立人体腹主动脉瘤壁强度预测模型
- 批准号:
23K08226 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Imaging (MRI) and Artificial Intelligence (AI) can improve preoperative malignancy risk prediction of ovarian masses.
磁共振成像(MRI)和人工智能(AI)可以改善卵巢肿块的术前恶性肿瘤风险预测。
- 批准号:
486885 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Operating Grants
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Innovation of cancer chemoradiotherapy based on hyperpolarized-nuclear magnetic resonance metabolic imaging
基于超极化核磁共振代谢成像的癌症放化疗创新
- 批准号:
23H02870 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Novel development of a pediatric Magnetic Resonance Imaging (MRI) scanner
SBIR 第一阶段:儿科磁共振成像 (MRI) 扫描仪的新开发
- 批准号:
2323231 - 财政年份:2023
- 资助金额:
$ 41.11万 - 项目类别:
Standard Grant