MRI: Development of a Scanning-Probe-Assisted Confocal Microscope for Investigating Optical and Magnetic Properties and Phenomena

MRI:开发扫描探针辅助共焦显微镜,用于研究光学和磁性特性及现象

基本信息

  • 批准号:
    1726573
  • 负责人:
  • 金额:
    $ 57.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Description:This instrument project is on development of a scanning-probe-assisted fluorescence microscope for simultaneous thermal, mechanical, magnetic resonance, and optical measurements of materials at variable temperatures and over micrometer and nanometer length scales. The complementary imaging techniques, integrated into a single platform with long-time, stable temperature control, enable nanoscale research that explores new materials and devices of emerging scientific and technological importance such as nanoscale sensing and information processing. As a whole, this project brings together a team of researchers with complementary expertise in sold-state physics, optics, and nano-engineering. Further, it offers students and postdoctoral researchers interdisciplinary education and the ability to interact with a wide network of collaborating research groups. These partnerships not only provide a broad dissemination platform but also allow the principal investigators to advance ongoing efforts to recruit and train students from communities under-represented in science.Technical Description:At the heart of this instrument is a closed-cycle cryo-workstation for variable temperature operation (4 K to 350 K) via contact to a thermal plate designed to minimize vibrations from a cryo-pump. A set of precision stages allows users to control the relative positions of the excitation laser beam, the scanning probe, and the sample. A miniature electromagnet is used to create a magnetic field of variable amplitude and direction, whereas a flat, glass-imprinted wave-guide serves as the source of resonant microwave and/or radio-frequency. The areas of research benefiting from this instrument include (i) the investigation of single photon emitters using two-dimensional semiconductors, (ii) the study of carrier spin dynamics in diamond, (iii) the development of new protocols for magnetic resonance imaging and spectroscopy at the nanoscale, (iv) the characterization and control of phase-change materials, (v) the investigation of magneto-plasmonic and spin-wave effects in magnetic nanostructures, and (vi) the understanding of single-photon dynamics in topological photonic metamaterials.
非技术说明:该仪器项目是开发一种扫描探针辅助荧光显微镜,用于在不同温度下以及在微米和纳米长度尺度上同时进行材料的热、机械、磁共振和光学测量。互补的成像技术集成到一个具有长时间稳定温度控制的单一平台中,使纳米级研究能够探索具有新兴科学和技术重要性的新材料和设备,如纳米级传感和信息处理。作为一个整体,该项目汇集了一个研究团队,在固态物理,光学和纳米工程互补的专业知识。此外,它为学生和博士后研究人员提供跨学科教育,并能够与广泛的合作研究小组网络进行互动。这些合作伙伴关系不仅提供了一个广泛的传播平台,也使主要研究人员能够推进正在进行的努力,招募和培训来自科学代表性不足的社区的学生。技术说明:该仪器的核心是一个封闭循环的低温工作站,通过与热板接触进行可变温度操作(4 K至350 K),该热板旨在最大限度地减少低温泵的振动。一组精密载物台允许用户控制激发激光束、扫描探针和样品的相对位置。一个微型电磁体被用来产生一个可变振幅和方向的磁场,而一个平坦的、玻璃压印的波导管用作谐振微波和/或射频的源。受益于这一仪器的研究领域包括:(一)使用二维半导体研究单光子发射器,(二)研究金刚石中的载流子自旋动力学,(三)开发纳米级磁共振成像和光谱学的新协议,(四)相变材料的表征和控制,(v)磁性纳米结构中磁等离子体和自旋波效应的研究,以及(vi)拓扑光子超材料中单光子动力学的理解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microcavity-coupled emitters in hexagonal boron nitride
  • DOI:
    10.1515/nanoph-2020-0187
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    N. Proscia;H. Jayakumar;X. Ge;Gabriel I. L'opez-Morales;Zav Shotan;Weidong Zhou;C. Meriles;V. Menon
  • 通讯作者:
    N. Proscia;H. Jayakumar;X. Ge;Gabriel I. L'opez-Morales;Zav Shotan;Weidong Zhou;C. Meriles;V. Menon
Room-temperature single photon emitters in cubic boron nitride nanocrystals
立方氮化硼纳米晶体中的室温单光子发射器
  • DOI:
    10.1364/ome.386791
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    López-Morales, Gabriel I.;Almanakly, Aziza;Satapathy, Sitakanta;Proscia, Nicholas V.;Jayakumar, Harishankar;Khabashesku, Valery N.;Ajayan, Pulickel M.;Meriles, Carlos A.;Menon, Vinod M.
  • 通讯作者:
    Menon, Vinod M.
Coupling of deterministically activated quantum emitters in hexagonal boron nitride to plasmonic surface lattice resonances
  • DOI:
    10.1515/nanoph-2019-0136
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    N. Proscia;R. Collison;C. Meriles;V. Menon
  • 通讯作者:
    N. Proscia;R. Collison;C. Meriles;V. Menon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Meriles其他文献

Carlos Meriles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Meriles', 18)}}的其他基金

NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
GOALI: Exploiting Dark Spins for Color-Center-Based Nanoscale Sensing and Imaging
GOALI:利用暗自旋进行基于色心的纳米级传感和成像
  • 批准号:
    2203904
  • 财政年份:
    2022
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Continuing Grant
Understanding and Controlling Rydberg States in Solid-State Platforms for Quantum Technologies
理解和控制量子技术固态平台中的里德伯态
  • 批准号:
    2216838
  • 财政年份:
    2022
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Continuing Grant
Paramagnetic Defects as a Platform for Quantum Spintronics in Diamond
顺磁缺陷作为金刚石量子自旋电子学的平台
  • 批准号:
    1914945
  • 财政年份:
    2019
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Continuing Grant
Collaborative Research - GOALI: Dynamic Nuclear Spin Hyperpolarization via Color Centers in Diamond
合作研究 - GOALI:通过钻石色心实现动态核自旋超极化
  • 批准号:
    1903839
  • 财政年份:
    2019
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
Exploring Carrier Spin Injection, Transport, and Trapping in Diamond
探索金刚石中的载流子自旋注入、传输和捕获
  • 批准号:
    1619896
  • 财政年份:
    2016
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Continuing Grant
Magnetic resonance imaging and spectroscopy at the nanoscale via probe paramagnetic centers
通过探针顺磁中心进行纳米级磁共振成像和光谱学
  • 批准号:
    1401632
  • 财政年份:
    2014
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
GOALI: Research and development of chip-integrated, magnetic-resonance-based platforms for chemical sensing of trace systems and nuclear polarization of fluids
目标:研究和开发基于磁共振的芯片集成平台,用于痕量系统的化学传感和流体的核极化
  • 批准号:
    1309640
  • 财政年份:
    2013
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
Towards Spin-based Quantum Computing in the Solid State: Tomography of a Spin Node
迈向固态中基于自旋的量子计算:自旋节点的断层扫描
  • 批准号:
    1314205
  • 财政年份:
    2013
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
Nanoscale Nuclear Spin Imaging and Spectroscopy using Nitrogen-Vacancy Centers in Diamond
使用钻石中氮空位中心的纳米级核自旋成像和光谱学
  • 批准号:
    1111410
  • 财政年份:
    2011
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

MRI: Development of a Scanning Single-Electron Box Electrometer Microscope for Studying Materials for Quantum Science and Technology
MRI:开发用于研究量子科学和技术材料的扫描单电子盒静电计显微镜
  • 批准号:
    2117438
  • 财政年份:
    2021
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of an Ultra-high Sensitivity Scanning SQUID Multi-Function Microscope for Nanoscale Magnetometry, Susceptometry, and Thermometry
MRI:开发用于纳米级磁力测定、电纳测定和测温的超高灵敏度扫描 SQUID 多功能显微镜
  • 批准号:
    1920324
  • 财政年份:
    2019
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning 4-Probe Microscope for Discovery and Characterization of Quantum Materials and Devices
MRI:开发用于发现和表征量子材料和器件的扫描 4 探针显微镜
  • 批准号:
    1828569
  • 财政年份:
    2018
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of Ultrafast Near-Field Scanning Optical Microscope
MRI:超快近场扫描光学显微镜的开发
  • 批准号:
    1828155
  • 财政年份:
    2018
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of a Localized Field Emission Scanning Electron Microscope and Secondary Electron Spin Polarization Analysis System
MRI:局域场发射扫描电子显微镜和二次电子自旋极化分析系统的开发
  • 批准号:
    1644655
  • 财政年份:
    2016
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of a Localized Field Emission Scanning Electron Microscope and Secondary Electron Spin Polarization Analysis System
MRI:局域场发射扫描电子显微镜和二次电子自旋极化分析系统的开发
  • 批准号:
    1531997
  • 财政年份:
    2015
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of an infrared scanning near-field optical microscope (IR s-SNOM) for broadband nano-imaging and -spectroscopy
MRI:开发用于宽带纳米成像和光谱学的红外扫描近场光学显微镜(IR s-SNOM)
  • 批准号:
    1531996
  • 财政年份:
    2015
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of an Apertureless Near-Field Scanning Optical and Magneto-Optical Kerr Effect Microscope for Nano-Science Applications
MRI:开发用于纳米科学应用的无孔径近场扫描光学和磁光克尔效应显微镜
  • 批准号:
    1631282
  • 财政年份:
    2015
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of multifunctional scanning probe microscope for nanofabrication and nanomaterials research
MRI:开发用于纳米制造和纳米材料研究的多功能扫描探针显微镜
  • 批准号:
    1429062
  • 财政年份:
    2014
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
MRI: Development of an infrared scanning nanoscope for research and education in ultra-small and ultra-fast properties of advanced materials
MRI:开发红外扫描纳米显微镜,用于先进材料超小和超快特性的研究和教育
  • 批准号:
    1337356
  • 财政年份:
    2013
  • 资助金额:
    $ 57.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了