Representation Theory, Cluster algebras, and Canonical Bases
表示论、簇代数和规范基
基本信息
- 批准号:1403527
- 负责人:
- 金额:$ 16.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI plans to conduct research in an area of mathematics at the interface of the representation theory of Lie algebras and quantum groups, cluster algebras, and noncommutative algebraic geometry. The representation theory of Lie algebras and quantum groups is a dynamically developing field of modern mathematics. It has had a large impact in other areas of mathematics, as well as in physics. A central theme of this proposal is to understand and investigate the properties of canonical and crystal bases, which endow certain fundamental algebras (such as quantized enveloping algebras) with an additional structure that has proven to be fruitful for understanding these algebras and their realizations as matrices. Understanding the relationship between these bases and closely related structures, such as totally positive varieties, geometric crystals, and cluster algebras, and their quantum and totally noncommutative analogues, is a unifying theme of this proposal.In one project the PI proposes a new approach to the study of Hecke algebras based on the discovery of some new Hopf algebras: the Hecke-Hopf algebras which contain Hecke algebras and co-act on them at the same time. The new information resulting from this study allows for the construction of new solutions to the quantum Yang-Baxter equation. Another project in the proposal is to explore new bases in quantized enveloping algebras which possess remarkable properties such as braid group action and the compatibility with Joseph's decomposition of the quantized enveloping algebras. These new bases are expected to settle the problem of decomposing endomorphism algebras of representations and to help explicitly compute the center of the ambient algebra. New information resulting from this study will be applied to constructing new quantum and noncommutative cluster structures and to the proof of the quantum Gelfand-Kirillov conjecture for those algebras.
PI计划在李代数和量子群、簇代数和非对易代数几何的表示理论的交界处进行数学领域的研究。李代数和量子群的表示论是现代数学中一个动态发展的领域。它在数学的其他领域产生了巨大的影响,在物理学中也是如此。这个提议的一个中心主题是理解和研究标准基和结晶基的性质,它们赋予某些基本代数(如量子化包络代数)一个额外的结构,这种结构已被证明对于理解这些代数及其作为矩阵的实现是卓有成效的。在一个项目中,PI基于一些新的Hopf代数的发现,提出了一种新的研究Hecke代数的方法:包含Hecke代数并同时与其余作用的Hecke-Hopf代数。从这项研究中得到的新信息使得构造量子杨-巴克斯特方程的新解成为可能。该方案的另一个项目是探索量子化包络代数中具有辫子群作用和与量化包络代数的Joseph分解相容等显着性质的新的基。这些新的基可望解决表示的自同态代数的分解问题,并有助于显式地计算环境代数的中心。这项研究的新信息将被用于构造新的量子和非对易团簇结构,并用于证明这些代数的量子Gelfand-Kirillov猜想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arkady Berenstein其他文献
Concavity of weighted arithmetic means with applications
- DOI:
10.1007/s000130050101 - 发表时间:
1997-08-01 - 期刊:
- 影响因子:0.500
- 作者:
Arkady Berenstein;Alek Vainshtein - 通讯作者:
Alek Vainshtein
Stability inequalities and universal Schubert calculus of rank 2
- DOI:
10.1007/s00031-011-9161-6 - 发表时间:
2011-09-09 - 期刊:
- 影响因子:0.400
- 作者:
Arkady Berenstein;Michael Kapovich - 通讯作者:
Michael Kapovich
Generalized electrical Lie algebras
广义电李代数
- DOI:
10.1016/j.aim.2025.110405 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:1.500
- 作者:
Arkady Berenstein;Azat Gainutdinov;Vassily Gorbounov - 通讯作者:
Vassily Gorbounov
Symplectic groups over noncommutative algebras
- DOI:
10.1007/s00029-022-00787-x - 发表时间:
2022-09-12 - 期刊:
- 影响因子:1.200
- 作者:
Daniele Alessandrini;Arkady Berenstein;Vladimir Retakh;Eugen Rogozinnikov;Anna Wienhard - 通讯作者:
Anna Wienhard
Arkady Berenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arkady Berenstein', 18)}}的其他基金
Representation Theory, Cluster Algebras, and Canonical Bases
表示论、簇代数和规范基
- 批准号:
1101507 - 财政年份:2011
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Representation Theory, Quantum Groups, and Canonical Bases
表示论、量子群和规范基
- 批准号:
0800247 - 财政年份:2008
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Representation Theory, Quantum Groups, and Birational Algebraic Geometry
表示论、量子群和双有理代数几何
- 批准号:
0501103 - 财政年份:2005
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
- 批准号:
0102382 - 财政年份:2001
- 资助金额:
$ 16.83万 - 项目类别:
Continuing Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
- 批准号:
9970533 - 财政年份:1999
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Cluster Algebras in Representation Theory, Geometry, and Physics
职业:表示论、几何和物理学中的簇代数
- 批准号:
2143922 - 财政年份:2022
- 资助金额:
$ 16.83万 - 项目类别:
Continuing Grant
Cluster algebras through representation theory
通过表示论的簇代数
- 批准号:
RGPIN-2018-04513 - 财政年份:2022
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2022
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Cluster algebras through representation theory
通过表示论的簇代数
- 批准号:
RGPIN-2018-04513 - 财政年份:2021
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2021
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Cluster Algebras in Representation Theory and Symplectic Geometry
表示论和辛几何中的簇代数
- 批准号:
2043079 - 财政年份:2020
- 资助金额:
$ 16.83万 - 项目类别:
Standard Grant
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2020
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Cluster algebras through representation theory
通过表示论的簇代数
- 批准号:
RGPIN-2018-04513 - 财政年份:2020
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual
Application of cluster algebras to punctured Riemann surfaces and combinatorial representation theory
簇代数在刺穿黎曼曲面和组合表示理论中的应用
- 批准号:
19K03440 - 财政年份:2019
- 资助金额:
$ 16.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interaction between Representation Theory of Algebras and Cluster Theory
代数表示论与簇论的相互作用
- 批准号:
RGPIN-2018-06107 - 财政年份:2019
- 资助金额:
$ 16.83万 - 项目类别:
Discovery Grants Program - Individual