Representation Theory, Quantum Groups, and Canonical Bases

表示论、量子群和规范基

基本信息

  • 批准号:
    0800247
  • 负责人:
  • 金额:
    $ 14.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2012-05-31
  • 项目状态:
    已结题

项目摘要

The main theme of this proposal is to investigate the area lying at the crossroads of the representation theory of Lie groups, quantum groups, cluster algebras, and noncommutative algebraic geometry. A new approach to the study of Lusztig's canonical bases and Kashiwara's crystal bases is proposed, based on quantum cluster algebras and geometric crystals as developed in recent papers of the proposer. New information resulting from this study will be applied to computing the multiplicities for the symmetric powers of representations of reductive groups, and constructing new totally positive varieties. The results of this study will be applied for solving problems emerging in the representations of discrete subgroups of reductive algebraic groups and Cherednik algebras as well as for explication and elaboration of related combinatorial and geometric structures including the ``geometric lifting'' of crystal bases as a new tool in understanding the local Langlands correspondence. Representation theory is one of the most dynamically developing fields of modern Mathematics. It has a large impact in other fields of Mathematics and numerous applications in other Natural Sciences. The concepts of canonical and crystal bases are of great importance for the representation theory: a mere establishing of existence of such bases has helped in solving classical enumeration problems like computing multiplicities of irreducible representations or decomposing tensor products of irreducible representations. A new class of canonical bases discovered by the proposer is expected to settle an old problem of decomposing symmetric powers of representations. Therefore, any information on canonical or crystal bases would be very beneficial for the representation theory. It has been revealed in the works of G. Lusztig and the subsequent works of the proposer that there are algebro-geometric counterparts for the purely discrete canonical and crystal bases: totally positive varieties, geometric crystals, and cluster algebras. Understanding the relationship between these structures underlying the canonical bases is one of main priorities of this proposal. This relationship has proved to be a useful tool in the study of Langlands correspondence -- the most mysterious and inspiring correspondence between Algebra and Geometry of the 20th century Mathematics.
该提案的主题是研究李群、量子群、簇代数和非交换代数几何表示论的十字路口领域。基于提出者最近论文中开发的量子簇代数和几何晶体,提出了一种研究 Lusztig 正则基和 Kashiwara 晶体基的新方法。这项研究产生的新信息将应用于计算还原群表示的对称幂的重数,并构造新的完全正簇。这项研究的结果将应用于解决还原代数群和切雷德尼克代数的离散子群表示中出现的问题,以及相关组合和几何结构的解释和阐述,包括晶体基的“几何提升”作为理解局部朗兰兹对应的新工具。表示论是现代数学发展最活跃的领域之一。它对数学的其他领域和其他自然科学的众多应用都有很大的影响。规范基和晶体基的概念对于表示论非常重要:仅仅建立这些基的存在性就有助于解决经典的枚举问题,例如计算不可约表示的重数或分解不可约表示的张量积。提议者发现的一类新的规范基有望解决分解表示的对称幂的老问题。因此,任何关于规范或晶体基础的信息都对表示论非常有益。 G. Lusztig 的著作和提议者的后续著作揭示了纯离散正则基和晶体基存在代数几何对应物:全正簇、几何晶体和簇代数。理解规范基础背后的这些结构之间的关系是该提案的主要优先事项之一。这种关系已被证明是研究朗兰兹对应关系的有用工具——朗兰兹对应关系是 20 世纪数学中代数和几何之间最神秘和最鼓舞人心的对应关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arkady Berenstein其他文献

Concavity of weighted arithmetic means with applications
  • DOI:
    10.1007/s000130050101
  • 发表时间:
    1997-08-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Arkady Berenstein;Alek Vainshtein
  • 通讯作者:
    Alek Vainshtein
Stability inequalities and universal Schubert calculus of rank 2
  • DOI:
    10.1007/s00031-011-9161-6
  • 发表时间:
    2011-09-09
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Arkady Berenstein;Michael Kapovich
  • 通讯作者:
    Michael Kapovich
Generalized electrical Lie algebras
广义电李代数
  • DOI:
    10.1016/j.aim.2025.110405
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Arkady Berenstein;Azat Gainutdinov;Vassily Gorbounov
  • 通讯作者:
    Vassily Gorbounov
Symplectic groups over noncommutative algebras
  • DOI:
    10.1007/s00029-022-00787-x
  • 发表时间:
    2022-09-12
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Daniele Alessandrini;Arkady Berenstein;Vladimir Retakh;Eugen Rogozinnikov;Anna Wienhard
  • 通讯作者:
    Anna Wienhard

Arkady Berenstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arkady Berenstein', 18)}}的其他基金

Representation Theory, Cluster algebras, and Canonical Bases
表示论、簇代数和规范基
  • 批准号:
    1403527
  • 财政年份:
    2014
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Representation Theory, Cluster Algebras, and Canonical Bases
表示论、簇代数和规范基
  • 批准号:
    1101507
  • 财政年份:
    2011
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Representation Theory, Quantum Groups, and Birational Algebraic Geometry
表示论、量子群和双有理代数几何
  • 批准号:
    0501103
  • 财政年份:
    2005
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
  • 批准号:
    0102382
  • 财政年份:
    2001
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Continuing Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
  • 批准号:
    9970533
  • 财政年份:
    1999
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
  • 批准号:
    2204700
  • 财政年份:
    2022
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Standard Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
  • 批准号:
    2744813
  • 财政年份:
    2022
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Studentship
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
  • 批准号:
    2101844
  • 财政年份:
    2021
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Continuing Grant
Representation theory of elliptic quantum toroidal algebras and its application to integrable systems
椭圆量子环代数表示论及其在可积系统中的应用
  • 批准号:
    21K03191
  • 财政年份:
    2021
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Interaction and number, representation theory, discrete dynamics
量子相互作用与数、表示论、离散动力学
  • 批准号:
    20K03560
  • 财政年份:
    2020
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
  • 批准号:
    20K03507
  • 财政年份:
    2020
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of quantum affine algebras and its applications in geometry and combinatorics
量子仿射代数表示论及其在几何和组合学中的应用
  • 批准号:
    19K14519
  • 财政年份:
    2019
  • 资助金额:
    $ 14.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了