Representation Theory, Quantum Groups, and Birational Algebraic Geometry
表示论、量子群和双有理代数几何
基本信息
- 批准号:0501103
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to investigation of the area lying at the crossroads of the representation theory of Lie groups, quantum groups, birational algebraic geometry, and piecewise-linear combinatorics. A new approach to the study of Lusztig's canonical bases and Kashiwara'scrystal bases is proposed, based on quantum cluster algebras and geometric crystals. New information resulting from this study will be applied to computing the multiplicities for the representations of reductive groups and for constructing new totally positive varieties. The results of this study will also be used for solving problems emerging in the representations of discrete subgroups of reductive algebraic groups as well as for explication and elaboration of related combinatorial and geometric structures. Representation theory of Lie algebras and quantum groups is one of the most dynamically developing fields of modern Mathematics. This theory has a large impact on other fields of Mathematics and generates numerous applications in other NaturalSciences. In their turn, the concepts of canonical and crystal bases are of great importance for the representation theory: a mere establishing of their existence has helped in solving classical enumeration problems (e.g., the problem of computing multiplicities of irreducible representations or decomposing tensor products of irreducible representations). Therefore, any information on canonical or crystal bases would be very beneficial for the representation theory. Understanding the relationship between the discrete (i.e., combinatorial) and continuous (i.e., geometric) structures of the canonical bases is one of the main priorities of this project. This relationship has proved to be a useful tool in the study of a famous Langlands correspondence -- the most mysterious and inspiring correspondence between Algebra and Geometry of the 20th century Mathematics.
这个项目致力于研究位于李群、量子群、双曲代数几何和分段线性组合学表示理论的十字路口的区域。基于量子簇代数和几何晶体,提出了一种研究Lusztig正则基和Kashiwara晶基的新方法。从这项研究中得到的新信息将被用于计算约化群的表示的重数和构造新的全正变种。这项研究的结果还将用于解决约化代数群的离散子群表示中出现的问题,以及解释和阐述相关的组合和几何结构。李代数和量子群的表示论是现代数学中发展最快的领域之一。这一理论对数学的其他领域产生了很大的影响,并在其他自然科学中产生了大量的应用。反过来,正则基和结晶基的概念对于表示理论是非常重要的:仅仅是建立它们的存在就有助于解决经典的计数问题(例如,计算不可约表示的多重性或不可约表示的分解张量积的问题)。因此,任何关于正则碱或晶体碱的信息都将对表象理论非常有益。了解正则基的离散(即组合)和连续(即几何)结构之间的关系是该项目的主要优先事项之一。这种关系已被证明是研究朗兰兹通信的有用工具,朗兰兹通信是20世纪数学中代数和几何之间最神秘和最鼓舞人心的通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arkady Berenstein其他文献
Concavity of weighted arithmetic means with applications
- DOI:
10.1007/s000130050101 - 发表时间:
1997-08-01 - 期刊:
- 影响因子:0.500
- 作者:
Arkady Berenstein;Alek Vainshtein - 通讯作者:
Alek Vainshtein
Stability inequalities and universal Schubert calculus of rank 2
- DOI:
10.1007/s00031-011-9161-6 - 发表时间:
2011-09-09 - 期刊:
- 影响因子:0.400
- 作者:
Arkady Berenstein;Michael Kapovich - 通讯作者:
Michael Kapovich
Generalized electrical Lie algebras
广义电李代数
- DOI:
10.1016/j.aim.2025.110405 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:1.500
- 作者:
Arkady Berenstein;Azat Gainutdinov;Vassily Gorbounov - 通讯作者:
Vassily Gorbounov
Symplectic groups over noncommutative algebras
- DOI:
10.1007/s00029-022-00787-x - 发表时间:
2022-09-12 - 期刊:
- 影响因子:1.200
- 作者:
Daniele Alessandrini;Arkady Berenstein;Vladimir Retakh;Eugen Rogozinnikov;Anna Wienhard - 通讯作者:
Anna Wienhard
Arkady Berenstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arkady Berenstein', 18)}}的其他基金
Representation Theory, Cluster algebras, and Canonical Bases
表示论、簇代数和规范基
- 批准号:
1403527 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Representation Theory, Cluster Algebras, and Canonical Bases
表示论、簇代数和规范基
- 批准号:
1101507 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Representation Theory, Quantum Groups, and Canonical Bases
表示论、量子群和规范基
- 批准号:
0800247 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
- 批准号:
0102382 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation Theory, Quantum Groups and Piecewise-Linear Combinatorics
表示论、量子群和分段线性组合学
- 批准号:
9970533 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Categorical methods in representation theory and quantum topology
会议:表示论和量子拓扑中的分类方法
- 批准号:
2204700 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
- 批准号:
2744813 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Higher Depth in Representation Theory, Number Theory, and Quantum Topology
更深入的表示论、数论和量子拓扑
- 批准号:
2101844 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation theory of elliptic quantum toroidal algebras and its application to integrable systems
椭圆量子环代数表示论及其在可积系统中的应用
- 批准号:
21K03191 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Interaction and number, representation theory, discrete dynamics
量子相互作用与数、表示论、离散动力学
- 批准号:
20K03560 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of quantum affine algebras and its applications in geometry and combinatorics
量子仿射代数表示论及其在几何和组合学中的应用
- 批准号:
19K14519 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists