GOALI: Failure Prediction and Reliability Analysis of Ultra-High Strength Steel Autobody Manufacturing Systems by Utilizing Material Microstructure Properties
GOALI:利用材料微观结构特性对超高强度钢汽车车身制造系统进行故障预测和可靠性分析
基本信息
- 批准号:1404276
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this Grant Opportunities for Academic Liaison with Industry (GOALI) award is to use structural information of system components to improve prediction of reliability and failure in complex systems. The results of this project are expected to be of great benefit to the auto industry. In particular, improved reliability and failure prediction of manufacturing tooling systems will lead to more efficient and effective maintenance planning and reductions in tool failures. This, in turn, will lead to improvements in product quality and reduction in cost. Lab-enhancement and on-site studies will provide real-world experience and problem-solving skills for engineering education.This research project deals with efficiently extracting material micro-structure characteristics and incorporating them into system reliability models to improve the accuracy of failure and reliability prediction. The new methodology will be applied, as an example, to the autobody manufacturing system of ultra-high strength steels, which is currently of great interest to the automotive industry but faces challenges in failure prediction and reliability analysis of manufacturing tool systems. Statistical methods will be developed to analyze and extract the micro-structure statistical characteristics and features of workpiece and tool materials that determine the strength competition and tool damage processes. In addition, a physical-statistical model that incorporates the extracted micro-structural features will be developed to describe the tool degradation process. Based on these, a reliability model of the repairable multi-component manufacturing tool system will be obtained. The research results will be implemented and validated through a three-stage process, including lab tests at the university lab, experiment and model validation using industry tryout, and validation and implementation in real manufacturing processes.
该奖项的目的是利用系统组件的结构信息来改进对复杂系统可靠性和故障的预测。该项目的成果预计将为汽车行业带来巨大利好。特别是,制造工具系统的可靠性和故障预测的改进将导致更高效和有效的维护计划并减少工具故障。反过来,这将导致产品质量的提高和成本的降低。实验室增强和现场研究将为工程教育提供现实经验和解决问题的技能。该研究项目致力于有效提取材料微观结构特征并将其纳入系统可靠性模型中,以提高故障和可靠性预测的准确性。例如,新方法将应用于超高强度钢的汽车车身制造系统,该系统目前引起汽车行业的极大兴趣,但在制造工具系统的故障预测和可靠性分析方面面临挑战。将开发统计方法来分析和提取决定强度竞争和刀具损坏过程的工件和刀具材料的微观结构统计特征和特征。此外,还将开发一个包含提取的微观结构特征的物理统计模型来描述工具退化过程。在此基础上,将获得可修复多部件制造工具系统的可靠性模型。研究成果将通过三个阶段的过程进行实施和验证,包括大学实验室的实验室测试、使用行业试用的实验和模型验证以及实际制造过程中的验证和实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qingyu Yang其他文献
MIPI 2022 Challenge on Quad-Bayer Re-mosaic: Dataset and Report
MIPI 2022 Quad-Bayer Re-mosaic 挑战赛:数据集和报告
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qingyu Yang;Guang Yang;Jun Jiang;Chongyi Li;Ruicheng Feng;Shangchen Zhou;Wenxiu Sun;Qingpeng Zhu;Chen Change Loy;Jinwei Gu - 通讯作者:
Jinwei Gu
MIPI 2022 Challenge on RGBW Sensor Re-mosaic: Dataset and Report
MIPI 2022 RGBW 传感器重新马赛克挑战:数据集和报告
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qingyu Yang;Guang Yang;Jun Jiang;Chongyi Li;Ruicheng Feng;Shangchen Zhou;Wenxiu Sun;Qingpeng Zhu;Chen Change Loy;Jinwei Gu - 通讯作者:
Jinwei Gu
An Online Continuous Progressive Second Price Auction for Electric Vehicle Charging
电动汽车充电在线连续渐进二价拍卖
- DOI:
10.1109/jiot.2018.2876422 - 发表时间:
2019-04 - 期刊:
- 影响因子:10.6
- 作者:
Yang Zhang;Qingyu Yang;Wei Yu;Dou An;Donghe Li;Wei Zhao - 通讯作者:
Wei Zhao
Multi Actor-Critic PPO: A Novel Reinforcement Learning Method for Intelligent Task and Charging Scheduling in Electric Freight Vehicles Management
多Actor-Critic PPO:电动货运车辆管理中智能任务和充电调度的新型强化学习方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Donghe Li;Chunlin Hu;Qingyu Yang;Shi - 通讯作者:
Shi
Bromodomain containing protein represses the Ras/Raf/MEK/ERK pathway to attenuate human hepatoma cell proliferation during HCV infection.
- DOI:
doi: 10.1016/j.canlet.2015.11.027. - 发表时间:
2016 - 期刊:
- 影响因子:
- 作者:
Qi Zhang;Liang Wei;Hongchuan Yang;Wanqi Yang;Qingyu Yang;Zhuofan Zhang;Kailang Wu;Jianguo Wu - 通讯作者:
Jianguo Wu
Qingyu Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Personalized Risk Prediction for Prevention and Early Detection of Postoperative Failure to Rescue
个性化风险预测,预防和早期发现术后抢救失败
- 批准号:
10753822 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
LFPKMPPM - Lubrication Failure Prediction of Key Mechanical Parts for Predictive Maintenance
LFPKMPPM - 关键机械部件润滑故障预测,用于预测性维护
- 批准号:
EP/Y028198/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Fellowship
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical utility of novel biomarkers for prediction of early pregnancy failure
新型生物标志物预测早期妊娠失败的临床应用
- 批准号:
10563608 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Multiscale data-driven failure prediction of hydrogen composite vessels under static and dynamic impact loading
静态和动态冲击载荷下氢复合材料容器的多尺度数据驱动失效预测
- 批准号:
EP/Y024567/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Fellowship
ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
- 批准号:
10717312 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Damage initiation, fracture evolution to failure in deep excavations in structured rock for mining, tunnelling and deep storage - Getting dilation, degradation and structural displacements right for prediction, field verification & observational desi
用于采矿、隧道开挖和深部存储的结构岩石深部开挖中的损伤萌生、断裂演化到失效 - 正确预测膨胀、退化和结构位移,进行现场验证
- 批准号:
RGPIN-2022-03052 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Prediction of clinical outcomes and treatments based on the metabolomics in heart failure with Osteosarcopenia
基于代谢组学的心力衰竭伴骨肌减少症的临床结果和治疗预测
- 批准号:
22K11288 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of Violent Rock Failure in Deep Underground by Rock Strain Energy
岩石应变能预测地下深部岩石剧烈破坏
- 批准号:
RGPIN-2022-03938 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual