Existence and Uniqueness Questions in Differential Geometry
微分几何中的存在唯一性问题
基本信息
- 批准号:1405537
- 负责人:
- 金额:$ 22.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1405537, Principal Investigator: Nicolaos Kapouleas Differential Geometry is an important field in Mathematics closely related to other fields of Mathematics and Physics, for example Topology, nonlinear Partial Differential Equations, and General Relativity. In order to understand and develop the theory in Differential Geometry it is necessary to have a sufficient supply of examples of the geometric objects under consideration. Finding such examples is usually a difficult problem. A method which has been very successful because of its generality and flexibility is the gluing methodology for constructing solutions to partial differential equations, using singular perturbations and known solutions on part of the domain of a problem. Although enormous progress has been made in this direction already, the subject seems to have a long way to go because there are many fundamental questions which are still completely open. Further progress requires much more development of the methodology and application to new questions. The principal investigator plans to continue developing the subject further as discussed next.First steps in this agenda will concentrate on advancing the principal investigator's program for desingularization and doubling constructions for minimal surfaces in Riemannian manifolds. Other gluing constructions will be pursued with various collaborators: Constructions for Einstein manifolds and Ricci solitons in four dimensions with Simon Brendle and on some projects also with Frederick Fong. Constructions for Constant Mean Curvature hypersurfaces with Christine Breiner. Constructions of special Lagrangian cones with Mark Haskins. On free boundary problems for minimal surfaces in the unit ball with Martin Li. Constructions for coassociative four-manifolds with Jason Lotay. Constructions for self-shrinkers for the Mean Curvature flow with Stephen Kleene, Niels Moller, and David Wiygul. He also plans to pursue some more collaborations on projects related to doubling and desingularization constructions with Christine Breiner, Jacob Bernstein, Stephen Kleene, F. Martin, W. Meeks, Niels Moller, and David Wiygul. Finally, the principal investigator plans to work, alone or with his collaborators, on some uniqueness/characterization/nonexistence questions related to or motivated by the above constructions.
AbstractAward:DMS 1405537,首席研究员:Nicolaos Kapouleas微分几何是数学中的一个重要领域,与数学和物理的其他领域密切相关,例如拓扑学,非线性偏微分方程和广义相对论。为了理解和发展微分几何的理论,有必要提供足够的几何对象的例子。找到这样的例子通常是一个困难的问题。由于其通用性和灵活性,一种非常成功的方法是胶合方法,用于构造偏微分方程的解,使用奇异摄动和已知的解的一部分问题的域。虽然在这方面已经取得了巨大的进展,但这个问题似乎还有很长的路要走,因为有许多根本问题仍然完全没有解决。要想取得进一步进展,就需要进一步发展方法并将其应用于新问题。首席研究员计划继续发展的主题进一步讨论下一个。在这个议程的第一步将集中在推进首席研究员的程序去奇异化和加倍的建设极小曲面在黎曼流形。其他胶合结构将与各种合作者进行:与Simon Brendle在四维中构建爱因斯坦流形和Ricci孤子,并在一些项目中与Frederick Fong合作。用克莉丝汀Breiner构造常平均曲率超曲面。特殊拉格朗日锥的构造与马克·哈斯金斯。单位球内极小曲面的自由边界问题。 用Jason Lotay构造余结合四维流形。与Stephen Kleene、Niels Moller和大卫Wiygul一起构造平均曲率流的自收缩器。他还计划与克莉丝汀布雷纳、雅各布伯恩斯坦、斯蒂芬克莱恩、F。Martin,W.米克斯、尼尔斯·穆勒和大卫·威古尔。最后,主要研究者计划单独或与他的合作者一起研究与上述结构相关或由其激发的一些独特性/特征化/不存在性问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolaos Kapouleas其他文献
Free boundary minimal surfaces with connected boundary in the $3$-ball by tripling the equatorial disc
通过将赤道盘增加三倍,在 3 美元球中具有连接边界的自由边界最小曲面
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.5
- 作者:
Nicolaos Kapouleas;David Wiygul - 通讯作者:
David Wiygul
Slowly rotating drops
- DOI:
10.1007/bf02096783 - 发表时间:
1990-04-01 - 期刊:
- 影响因子:2.600
- 作者:
Nicolaos Kapouleas - 通讯作者:
Nicolaos Kapouleas
Conservation Laws and Gluing Constructions for Constant Mean Curvature (Hyper)Surfaces
恒定平均曲率(超)表面的守恒定律和粘合结构
- DOI:
10.1090/noti2473 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Christine Breiner;Nicolaos Kapouleas;S. Kleene - 通讯作者:
S. Kleene
Compact constant mean curvature surfaces in Euclidean three-space
- DOI:
10.4310/jdg/1214446560 - 发表时间:
1991 - 期刊:
- 影响因子:2.5
- 作者:
Nicolaos Kapouleas - 通讯作者:
Nicolaos Kapouleas
Constant mean curvature surfaces in Euclidean three-space
欧几里得三空间中的恒定平均曲率曲面
- DOI:
- 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
Nicolaos Kapouleas - 通讯作者:
Nicolaos Kapouleas
Nicolaos Kapouleas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolaos Kapouleas', 18)}}的其他基金
Special Langrangian submanifolds in C^n and minimal surfaces in 3-manifolds
C^n 中的特殊朗格朗日子流形和 3 流形中的最小曲面
- 批准号:
1105371 - 财政年份:2011
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: On Some Geometric Constructions and On the Properties of the Kerr Black Hole
数学科学:关于一些几何结构和克尔黑洞的性质
- 批准号:
9704338 - 财政年份:1997
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Mathematical Sciences: On the Construction of Einstein Metrics and Related Projects
数学科学:论爱因斯坦度量及相关项目的构建
- 批准号:
9404657 - 财政年份:1994
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: NSF Young Investigator
数学科学:NSF 青年研究员
- 批准号:
9357616 - 财政年份:1993
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Constructions of Canonical Geometric Objects
数学科学:规范几何对象的一些构造
- 批准号:
9116103 - 财政年份:1991
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
相似海外基金
Development of methods for determining (non-)uniqueness of deformation path and for guiding deformation of rigid origami
开发确定变形路径(非)唯一性和引导刚性折纸变形的方法
- 批准号:
23K19160 - 财政年份:2023
- 资助金额:
$ 22.79万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
- 批准号:
2306258 - 财政年份:2023
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant
Analysis on resonant interactions and unconditional uniqueness for dispersive equations
色散方程的共振相互作用和无条件唯一性分析
- 批准号:
23K19019 - 财政年份:2023
- 资助金额:
$ 22.79万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Existence, Uniqueness, and Regularity for Equations in Mathematical Fluid Mechanics
数学流体力学方程的存在性、唯一性和正则性
- 批准号:
RGPIN-2019-05410 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of the uniqueness, diversity, and usefulness of local citrus such as Shiikuwasha grown on the Ryukyu Islands
阐明琉球群岛种植的 Shiikuwasha 等当地柑橘的独特性、多样性和有用性
- 批准号:
22K12544 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A computational proof of existence and uniqueness for higher Airy structures
高等艾里结构的存在性和唯一性的计算证明
- 批准号:
573155-2022 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Continuing Grant
Integrated single-cell multiomics analysis of primate brain for elucidating the molecular basis of human uniqueness
灵长类大脑的综合单细胞多组学分析,阐明人类独特性的分子基础
- 批准号:
22H02710 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bifurcation, uniqueness and regularity for differential equations with critical and supercritical drifts
具有临界和超临界漂移的微分方程的分岔、唯一性和正则性
- 批准号:
RGPIN-2018-04137 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation, Stability, and Non-uniqueness in Ideal Fluids
理想流体中的分岔、稳定性和非唯一性
- 批准号:
2205910 - 财政年份:2022
- 资助金额:
$ 22.79万 - 项目类别:
Standard Grant