Transchromatic homotopy theory

跨色同伦理论

基本信息

  • 批准号:
    1406408
  • 负责人:
  • 金额:
    $ 13.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Topological spaces are some of the most fundamental objects in mathematics. Algebraic topology associates algebraic objects to topological spaces in order to tell them apart. Some of the most powerful algebraic tools for doing this are "cohomology theories". A certain sequence of cohomology theories called the Morava E-theories have a deep and somewhat understood connection to algebraic geometry and an important conjectural relationship with geometry. The first two Morava E-theories are classical; however, the rest are quite mysterious. The goal of this project is to use the connection to algebraic geometry to play different Morava E-theories off each other in order to expose properties of the conjectural geometry. The PI plans to study the relationship between the chromatic layers in order to expose the geometry that lurks behind the scenes in chromatic homotopy theory. He will do this by pursuing three interrelated programs. The PI will use the algebraic geometry of p-divisible groups, generalized character theory, and field theories (in the sense of Stolz-Teichner) to attack the problem. In joint work with Schommer-Pries, the PI hopes to give a field theoretic construction of higher chromatic cohomology theories such as Morava E-theory. Also of particular interest are "transchromatic" proofs of classical theorems that lead to more general results. For instance, in work with Tomer Schlank, the PI has given a new proof of Strickland's theorem on the Morava E-theory of symmetric groups that naturally leads to a generalization of the theorem to wreath products of finite abelian groups with symmetric groups. One of the main tools in the proof is a character map from E-theory to p-adic K-theory that allows one to reduce certain problems in E-theory to representation theory. This map deserves further study.
拓扑空间是数学中最基本的对象之一。代数拓扑将代数对象与拓扑空间联系起来,以便区分它们。一些最强大的代数工具是“上同调理论”。一组被称为Morava e -理论的上同调理论与代数几何有着深刻的、多少可以理解的联系,与几何有着重要的推测关系。前两个莫拉瓦e理论是经典的;然而,其余的都很神秘。这个项目的目标是利用与代数几何的联系来发挥不同的Morava e理论,以揭示猜想几何的属性。PI计划研究色层之间的关系,以揭示隐藏在色同伦理论背后的几何。他将通过开展三个相互关联的项目来实现这一目标。PI将使用p可分群的代数几何、广义特征理论和场论(在Stolz-Teichner的意义上)来解决这个问题。在与Schommer-Pries的合作中,PI希望给出更高色上同调理论(如Morava e理论)的场论构造。同样特别有趣的是经典定理的“转色”证明,它可以得出更一般的结果。例如,在与Tomer Schlank的合作中,PI在对称群的Morava e理论上给出了Strickland定理的新证明,这自然地将该定理推广到有限阿贝尔群与对称群的圈积。证明的主要工具之一是从e理论到p进k理论的特征映射,它允许人们将e理论中的某些问题简化为表示理论。这张地图值得进一步研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Stapleton其他文献

Level structures on p-divisible groups from the Morava E-theory of abelian groups
来自阿贝尔群 Morava E 理论的 p 可整群的能级结构
  • DOI:
    10.1007/s00209-023-03216-7
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhen Huan;Nathaniel Stapleton
  • 通讯作者:
    Nathaniel Stapleton

Nathaniel Stapleton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Stapleton', 18)}}的其他基金

Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
  • 批准号:
    2304781
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
The Second Transatlantic Transchromatic Homotopy Theory Conference
第二届跨大西洋跨色同伦理论会议
  • 批准号:
    1955705
  • 财政年份:
    2020
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
New Tools in Chromatic Homotopy Theory
色同伦理论的新工具
  • 批准号:
    1906236
  • 财政年份:
    2019
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant

相似海外基金

Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
  • 批准号:
    2316253
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
  • 批准号:
    EP/X038424/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Research Grant
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
  • 批准号:
    2305373
  • 财政年份:
    2023
  • 资助金额:
    $ 13.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了