The Second Transatlantic Transchromatic Homotopy Theory Conference
第二届跨大西洋跨色同伦理论会议
基本信息
- 批准号:1955705
- 负责人:
- 金额:$ 1.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This National Science Foundation award provides travel funds for US based junior researchers to travel to "The Second Transatlantic Transchromatic Homotopy Theory Conference" that will take place at the University of Regensburg, Germany from August 2-7, 2020. This five day event will include talks by world experts as well as talks by junior researchers. The aim of this conference is to bring experts in transchromatic homotopy theory together with both junior researchers and graduate students working in the area as well as experts in closely associated fields including arithmetic geometry and differential geometry. A second aim is to give very early career researchers (i,e,. graduate students and postdocs) a chance to describe their research in the form of shorter talks. In doing this, not only will graduate students receive personal mentoring, but mathematicians outside of the field will be exposed to what is going on in transchromatic homotopy theory. We hope that this will significantly raise awareness of both the techniques that have been developed and also the problems that are faced.Transchromatic homotopy theory is a rapidly emerging subarea of chromatic homotopy theory. Chromatic homotopy theory organizes the stable homotopy category by decomposing it into "chromatic layers". In studying these layers, algebraic topologists have found deep relationships between homotopy theory and algebraic geometry, number theory, higher category theory, and supersymmetric field theories. To assemble results at each chromatic layer into global results about the stable homotopy category, the relationship between the chromatic layers must be understood. This is the primary goal of transchromatic homotopy theory. Since the first Transatlantic Transchromatic Homotopy Theory conference, which occurred at the University of Regensburg in June, 2017, real applications of transchromatic homotopy theory to other areas have begun to appear. In particular, fundamental calculations in transchromatic homotopy theory have been applied very successfully to better understand the equivariant stable homotopy category. The primary scientific aim of this conference is to describe work on the forefront of this area, explain applications to other mathematical areas, and also to get input from experts in related areas. Our speakers consist of established world experts in chromatic homotopy theory, arithmetic geometry, differential geometry, and group theory, all of whose work is related in some way to transchromatic homotopy theory, as well as early career mathematicians who are rapidly pushing the field forward. More information is available at https://www-app.uni-regensburg.de/Fakultaeten/MAT/sfb-higher-invariants/index.php/SFB_transchromatic_2020.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个国家科学基金会奖为美国的初级研究人员提供旅行资金,前往“第二次跨大西洋跨色同伦理论会议”,将于2020年8月2日至7日在德国里根斯堡大学举行。为期五天的活动将包括世界专家的会谈以及初级研究人员的会谈。本次会议的目的是将transchromatic同伦理论的专家与该领域的初级研究人员和研究生以及密切相关领域的专家(包括算术几何和微分几何)聚集在一起。第二个目标是给非常早期的职业研究人员(即,。研究生和博士后)有机会以简短的演讲形式描述他们的研究。在这样做的过程中,不仅研究生会得到个人指导,而且该领域以外的数学家将接触到transchromatic同伦理论中正在发生的事情。我们希望这将大大提高人们对已经开发的技术和面临的问题的认识。Transchromatic同伦理论是色同伦理论的一个迅速崛起的子领域。色同伦理论通过将稳定同伦范畴分解为“色层”来组织它。在研究这些层时,代数拓扑学家发现同伦理论与代数几何、数论、高等范畴理论和超对称场论之间有着深刻的关系。为了将每个色层的结果组装成关于稳定同伦范畴的全局结果,必须理解色层之间的关系。这是transchromatic同伦理论的主要目标。自2017年6月在里根斯堡大学举行的第一届跨大西洋跨色同伦理论会议以来,跨色同伦理论在其他领域的真实的应用已经开始出现。特别是,transchromatic同伦理论的基本计算已经非常成功地应用于更好地理解等变稳定同伦范畴。本次会议的主要科学目的是描述这一领域的前沿工作,解释其他数学领域的应用,并获得相关领域专家的意见。我们的演讲者包括色同伦理论,算术几何,微分几何和群论的专家,他们的工作都以某种方式与transchromatic同伦理论有关,以及正在迅速推动该领域发展的早期职业数学家。更多信息可在www.example.com上获得https://www-app.uni-regensburg.de/Fakultaeten/MAT/sfb-higher-invariants/index.php/SFB_transchromatic_2020.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel Stapleton其他文献
Level structures on p-divisible groups from the Morava E-theory of abelian groups
来自阿贝尔群 Morava E 理论的 p 可整群的能级结构
- DOI:
10.1007/s00209-023-03216-7 - 发表时间:
2023-02 - 期刊:
- 影响因子:0.8
- 作者:
Zhen Huan;Nathaniel Stapleton - 通讯作者:
Nathaniel Stapleton
Nathaniel Stapleton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel Stapleton', 18)}}的其他基金
Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
- 批准号:
2304781 - 财政年份:2023
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
相似海外基金
The Transformation of Transatlantic Counter-Terrorism 2001-25
跨大西洋反恐的转变 2001-25
- 批准号:
MR/Y003950/1 - 财政年份:2024
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship
Queerness in nineteenth-century transatlantic spiritualism
十九世纪跨大西洋唯灵论中的酷儿
- 批准号:
2708224 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Studentship
A Comprehensive and Illustrative Study of Modern English Literature from the Transatlantic Point of View
从跨大西洋的角度对现代英国文学进行全面、说明性的研究
- 批准号:
22K00432 - 财政年份:2022
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aristocratic Republicanism in the age of revolutions: a transatlantic perspective
革命时代的贵族共和主义:跨大西洋视角
- 批准号:
2644731 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Studentship
The Legacies of the British Slave Trade: The Structures and Significance of British Investment in the Transatlantic Slave Trade, c. 1550-1807
英国奴隶贸易的遗产:英国跨大西洋奴隶贸易投资的结构和意义,c。
- 批准号:
AH/V004417/1 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
Transatlantic Knowledge Production: Expanding Networks in The Modernist Archives Publishing Project
跨大西洋知识生产:现代主义档案出版项目中扩大网络
- 批准号:
AH/V009656/1 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Research Grant
Romantic Regeneration, Healing, and Greencare: The Development and Modernity of Transatlantic Ecology
浪漫再生、治愈与绿色关怀:跨大西洋生态学的发展与现代性
- 批准号:
21H00512 - 财政年份:2021
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Transatlantic (US-NI-RoI) Workshop on Collaborative IoT/CPS Research Opportunities – Security and Trust Beyond Hardening
跨大西洋 (US-NI-RoI) 协作物联网/CPS 研究机会研讨会 – 超越强化的安全与信任
- 批准号:
2049960 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Standard Grant
Poetry in Transatlantic Translation: Circulation and Practice Across Languages
跨大西洋翻译中的诗歌:跨语言的流通与实践
- 批准号:
AH/T007087/1 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Fellowship
Transatlantic Print Culture and the 18th-century Great Awakening
跨大西洋印刷文化与 18 世纪的大觉醒
- 批准号:
20K00423 - 财政年份:2020
- 资助金额:
$ 1.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




