New Tools in Chromatic Homotopy Theory

色同伦理论的新工具

基本信息

项目摘要

Much of modern mathematics is concerned with the intricate interactions between different areas inside of mathematics. One of the primary goals of this project is to use ideas from logic in order to compare topology and algebra. An area of topology called chromatic homotopy theory studies spaces by ``factoring" them into prime parts in the same way that an integer has a prime factorization. Using ideas from logic, we can understand the collection of prime spaces as the prime tends to infinity. It turns out that the resulting collection of spaces can be completely understood using only algebra. This idea is quite new and we hope to develop it into a full theory. This will allow for purely algebraic results to have important topological consequences. Another primary goal of this project is to use topology to build a new bridge between geometry and algebra. This is a familiar story to mathematicians. Classically, certain geometric objects called vector bundles were used to produce an important algebraic invariant of spaces. This algebraic invariant was generalized in the 80's, but in the process of generalization the connection to geometry was somewhat lost. On the other hand, the generalization has a beautiful relationship to an area of algebra called arithmetic geometry. Further developing this relationship with arithmetic geometry should expose part of the geometry that was lost.The PI plans to develop new tools in chromatic homotopy theory that provide both conceptual and computational insight while revealing chromatic homotopy theory as the support for a bridge between geometry and arithmetic geometry. These tools include a geometric construction of Morava E-theory in terms of Stolz--Teichner field theories, a description of the asymptotic behavior of chromatic homotopy theory that introduces Drinfeld elliptic modules into chromatic calculations, and a fusion-system-like combinatorial description of the classifying spaces of finite groups when localized at a chromatic prime leading to the resolution of a conjecture of Ravenel's. These tools are all built on insights gained from the PI's work on and applications of transchromatic homotopy theory. Because of this, the PI will also continue to develop transchromatic homotopy theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代数学的大部分内容都与数学内部不同领域之间错综复杂的相互作用有关。这个项目的主要目标之一是使用逻辑的想法,以比较拓扑和代数。拓扑学中的一个领域叫做色同伦理论,它通过把空间“分解”成素部分来研究空间,就像整数有一个素分解一样。使用逻辑的思想,我们可以理解素数空间的集合,因为素数趋于无穷大。事实证明,由此产生的空间集合可以完全使用代数来理解。这是一个很新的想法,我们希望把它发展成一个完整的理论。这将允许纯代数的结果有重要的拓扑后果。 这个项目的另一个主要目标是使用拓扑学在几何和代数之间建立一座新的桥梁。这对数学家来说是一个熟悉的故事。经典上,某些称为向量丛的几何对象被用来产生空间的一个重要代数不变量。这个代数不变量在80年代被推广,但在推广的过程中,与几何的联系有些丢失。另一方面,这种推广与代数中的一个领域--算术几何--有着很好的关系。进一步发展这种关系与算术几何应该暴露部分的几何是losed.The PI计划开发新的工具,在色同伦理论,提供概念和计算的洞察力,同时揭示色同伦理论的支持几何和算术几何之间的桥梁。这些工具包括一个几何结构的摩拉瓦E-理论方面的Stolz-Teichner领域的理论,描述的渐近行为的色同伦理论,介绍德林费尔德椭圆模块到色计算,和融合系统的组合描述的分类空间的有限群时,本地化的色素数导致决议的猜想的拉文埃尔的。这些工具都是建立在从PI的工作和transchromatic同伦理论的应用获得的见解。正因为如此,PI也将继续发展transchromatic同伦理论。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular cohomology from supersymmetric field theories
超对称场论的奇异上同调
  • DOI:
    10.1016/j.aim.2021.107944
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Schommer-Pries, Christopher;Stapleton, Nathaniel
  • 通讯作者:
    Stapleton, Nathaniel
Monochromatic homotopy theory is asymptotically algebraic
单色同伦理论是渐近代数的
  • DOI:
    10.1016/j.aim.2021.107999
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Barthel, Tobias;Schlank, Tomer M.;Stapleton, Nathaniel
  • 通讯作者:
    Stapleton, Nathaniel
Power operations in the Stolz–Teichner program
StolzâTeichner 计划中的电力运营
  • DOI:
    10.2140/gt.2022.26.1773
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Barthel, Tobias;Berwick-Evans, Daniel;Stapleton, Nathaniel
  • 通讯作者:
    Stapleton, Nathaniel
A formula for p-completion by way of the Segal conjecture
基于 Segal 猜想的 p 完成公式
  • DOI:
    10.1016/j.topol.2022.108255
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Reeh, Sune Precht;Schlank, Tomer M.;Stapleton, Nathaniel
  • 通讯作者:
    Stapleton, Nathaniel
Transfer ideals and torsion in the Morava E-theory of abelian groups
  • DOI:
    10.1007/s40062-020-00259-z
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    T. Barthel;Nathaniel J. Stapleton
  • 通讯作者:
    T. Barthel;Nathaniel J. Stapleton
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Stapleton其他文献

Level structures on p-divisible groups from the Morava E-theory of abelian groups
来自阿贝尔群 Morava E 理论的 p 可整群的能级结构
  • DOI:
    10.1007/s00209-023-03216-7
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Zhen Huan;Nathaniel Stapleton
  • 通讯作者:
    Nathaniel Stapleton

Nathaniel Stapleton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Stapleton', 18)}}的其他基金

Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
  • 批准号:
    2304781
  • 财政年份:
    2023
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
The Second Transatlantic Transchromatic Homotopy Theory Conference
第二届跨大西洋跨色同伦理论会议
  • 批准号:
    1955705
  • 财政年份:
    2020
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Transchromatic homotopy theory
跨色同伦理论
  • 批准号:
    1406408
  • 财政年份:
    2014
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant

相似海外基金

e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
  • 批准号:
    10098114
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    EU-Funded
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Discovery Projects
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Research Grant
Sustaining Innovative Tools to Expand Youth-Friendly HIV Self-Testing (S-ITEST)
维持创新工具以扩大青少年友好型艾滋病毒自我检测 (S-ITEST)
  • 批准号:
    10933892
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
  • 批准号:
    2340192
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Continuing Grant
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Continuing Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
  • 批准号:
    2336776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
  • 批准号:
    24K04103
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
  • 批准号:
    10104323
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    EU-Funded
VITAL: VIrtual Twins as tools for personalised clinicAL care
VITAL:虚拟双胞胎作为个性化临床护理的工具
  • 批准号:
    10106393
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了