Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
基本信息
- 批准号:1406532
- 负责人:
- 金额:$ 15.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports work on two projects in mathematics that have bearing on areas of physics. Its mathematical scope involves number theory, representation theory, and algebraic geometry and relates to what is now known as the Geometric Langlands Program. Robert Langlands in the 1960's proposed a program, which is a culmination of a sequence of theorems in number theory that began with the quadratic reciprocity theorem, proved by Gauss around 1800. Alexander Beilinson and Vladimir Drinfeld suggested a geometric version of the Langlands program, in which they brought the ideas of Langlands together with tools and ideas from other areas of mathematics and physics: algebraic geometry, sheaf theory, moduli spaces, integrable systems, and many others. Later, Anton Kapustin and Edward Witten in a breakthrough paper related the Geometric Langlands Program to supersymmetry and electro-magnetic duality. The central objects in the two projects are principal bundles for reductive algebraic groups; the PI plans to study certain questions about them in the context of the Geometric Langlands Program.In the first project, partly in collaboration with Ivan Panin, the PI will apply techniques of the Geometric Langlands Program (namely, affine Grassmannians) to the local study of principal bundles. A principal bundle (that is, a torsor) for a reductive group scheme is not necessarily trivial in the Zariski topology. However, a conjecture of Grothendieck and Serre predicts that it is trivial if it is rationally trivial and the base is smooth. This conjecture is already proved in certain cases, but the PI aims to prove it in wider generality. The PI also plans to describe the necessary and sufficient conditions for extending a principal bundle over the fraction field to a neighborhood of a closed point. The second project, partly in collaboration with Dmitry Arinkin, is aimed at proving the quasi-classical version of the categorical Langlands correspondence. This is the equivalence between the derived category of the Hitchin integrable system for a reductive group and the derived category of the Hitchin system for the Langlands dual group. This should be viewed as an extension of the Fourier-Mukai transform for abelian varieties to singular degenerations of abelian varieties. There are strong indications that a proof of the duality for Hitchin systems will help with the proof of the original Geometric Langlands conjectures.
该奖项支持两个与物理学领域有关的数学项目。 它的数学范围涉及数论,表示论和代数几何,并涉及到现在被称为几何朗兰兹纲领。 罗伯特·朗兰兹在20世纪60年代提出了一个程序,它是数论中一系列定理的高潮,这些定理始于高斯在1800年左右证明的二次互易定理。 亚历山大贝林森和弗拉基米尔德林费尔德提出了一个几何版本的朗兰兹纲领,他们把朗兰兹纲领的思想与其他数学和物理领域的工具和思想结合在一起:代数几何、层理论、模空间、可积系统等等。后来,安东·卡普斯汀和爱德华·维滕在一篇突破性的论文中将几何朗兰兹纲领与超对称性和电磁对偶性联系起来。这两个项目的中心对象是约化代数群的主丛; PI计划在几何朗兰兹纲领的背景下研究它们的某些问题。在第一个项目中,PI将部分与伊万·帕宁合作,将几何朗兰兹纲领(即仿射格拉斯曼)的技术应用于主丛的局部研究。 一个约化群概型的主丛(也就是一个torsor)在Zebraki拓扑中不一定是平凡的。 然而,Grothendieck和Serre的一个猜想预测,如果它是理性平凡的,并且基是光滑的,则它是平凡的。 这个猜想已经在某些情况下得到证明,但PI的目的是在更广泛的一般性证明它。 PI还计划描述将分数域上的主丛扩展到闭点邻域的充分必要条件。 第二个项目,部分与德米特里·阿林金合作,旨在证明类经典版本的范畴朗兰兹对应。 这是约化群的希钦可积系统的导出范畴与朗兰兹对偶群的希钦系统的导出范畴之间的等价性。 这应该被看作是一个扩展的傅立叶-Mukai变换的阿贝尔品种奇异退化的阿贝尔品种。 有强烈的迹象表明,证明希钦系统的对偶性将有助于证明原来的几何朗兰兹图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Fedorov其他文献
Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from emKlebsiella pneumoniae/em
肺炎克雷伯氏菌功能性四聚体 UDP-葡萄糖焦磷酸化酶的鉴定与表征
- DOI:
10.1128/mbio.02071-24 - 发表时间:
2024-12-17 - 期刊:
- 影响因子:4.700
- 作者:
Isabel Ramón Roth;Pavel Kats;Timm Fiebig;Françoise Routier;Roman Fedorov;Larissa Dirr;Jana I. Führing - 通讯作者:
Jana I. Führing
SnowWatch: A Multi-modal Citizen Science Application
SnowWatch:多模式公民科学应用程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Roman Fedorov;P. Fraternali;C. Pasini - 通讯作者:
C. Pasini
Switch-2 Dependent Modulation of the Myosin Power Stroke
- DOI:
10.1016/j.bpj.2009.12.773 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Daniela Kathmann;Ralph P. Diensthuber;Falk K. Hartmann;Roman Fedorov;Dietmar J. Manstein;Georgios Tsiavaliaris - 通讯作者:
Georgios Tsiavaliaris
SnowWatch: Snow Monitoring through Acquisition and Analysis of User-Generated Content
SnowWatch:通过采集和分析用户生成的内容进行降雪监测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Roman Fedorov;P. Fraternali;C. Pasini;M. Tagliasacchi - 通讯作者:
M. Tagliasacchi
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
使用众包网络内容来告知以降雪为主的流域的供水系统运行情况
- DOI:
10.5194/hess-20-5049-2016 - 发表时间:
2016 - 期刊:
- 影响因子:6.3
- 作者:
M. Giuliani;A. Castelletti;Roman Fedorov;P. Fraternali - 通讯作者:
P. Fraternali
Roman Fedorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Fedorov', 18)}}的其他基金
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Principal Bundles and Higgs Bundles in Algebraic Geometry
代数几何中的主丛和希格斯丛
- 批准号:
2001516 - 财政年份:2020
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
- 批准号:
1764391 - 财政年份:2017
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
相似国自然基金
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 15.76万 - 项目类别:
Continuing Grant
Positive Vector Bundles in Combinatorics
组合数学中的正向量束
- 批准号:
2246518 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Studies on canonical bundles of algebraic varieties
代数簇的正则丛研究
- 批准号:
23H01064 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
- 批准号:
2401403 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
ERI: RUI: Wavefront shaping through flexible multicore fiber bundles for coherent light focusing and imaging in neurophotonics
ERI:RUI:通过灵活的多芯光纤束进行波前整形,用于神经光子学中的相干光聚焦和成像
- 批准号:
2302023 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Study for growth process of nano-tendril bundles by helium plasma exposure with impurity gases
氦等离子体与杂质气体暴露纳米卷须束生长过程的研究
- 批准号:
23K13083 - 财政年份:2023
- 资助金额:
$ 15.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Moduli Spaces and Vector Bundles, New trends
模空间和向量丛,新趋势
- 批准号:
2203287 - 财政年份:2022
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
- 批准号:
2204346 - 财政年份:2022
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant