Principal Bundles and Higgs Bundles in Algebraic Geometry

代数几何中的主丛和希格斯丛

基本信息

  • 批准号:
    2001516
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The study of principal bundles began in the early XXth century by physicists as a formalism to describe electromagnetism. Later, this was extended to encompass strong and weak interactions, so that principal bundles became a basis for the so-called standard model - a physical theory describing three out of four fundamental interactions. In mathematics, principal bundles penetrate many areas: geometry, number theory, mathematical physics, and others. In 1950's Fields Medalist Jean-Pierre Serre recognized the importance of principal bundles in algebraic geometry. In his 1958 seminal paper he gave the first modern definition of a principal bundle and formulated a certain deep conjecture. This conjecture, as well as some remaining questions, are among the oldest unsolved foundational questions in mathematics. The first part of this project is aimed at proving some of these conjectures. The remaining parts of the projects are related to the so-called Higgs principal bundles, which can be thought of as mathematical incarnations of the Higgs boson -- a recently found elementary particle. These parts of the project belong to the famous Langlands program unifying number theory, algebraic geometry, harmonic analysis, and mathematical physics. This award will support continuing research in these areas. Advising students and giving talks at conferences are going to be part of the proposed activity.In more detail, the first project originated from the Grothendieck-Serre conjecture on principal bundles, which was settled recently for rings containing fields by Ivan Panin and the PI. The PI plans to extend the proof to the mixed characteristic case as well as to work on the purity conjecture for principal bundles. The purity conjecture is, in a sense, the next logical step after the Grothendieck-Serre conjecture. In the second project, the PI intends to construct and prove the local Langlands duality for Hitchin systems and to derive some cases of the global Langlands duality for Hitchin systems from the local case. The third project is devoted to counting motivic volumes of moduli stacks of principal Higgs bundles. The goal is to generalize the previous results of the PI and other people from the GL(n) case to the case of arbitrary reductive groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
主丛的研究开始于世纪初,由物理学家作为描述电磁学的一种形式。后来,这被扩展到包括强相互作用和弱相互作用,因此主束成为所谓标准模型的基础--一种描述四分之三的基本相互作用的物理理论。在数学中,主丛渗透到许多领域:几何、数论、数学物理等。1950年菲尔兹奖获得者让-皮埃尔·塞尔认识到主丛在代数几何中的重要性。在他1958年的开创性论文中,他给出了主丛的第一个现代定义,并提出了一个深刻的猜想。这个猜想,以及一些遗留的问题,是数学中最古老的未解决的基础问题之一。本项目的第一部分旨在证明其中的一些特性。该项目的其余部分与所谓的希格斯主束有关,希格斯主束可以被认为是希格斯玻色子的数学化身-最近发现的基本粒子。这个项目的这些部分属于著名的朗兰兹纲领,它统一了数论、代数几何、调和分析和数学物理。该奖项将支持这些领域的持续研究。建议学生和在会议上发表演讲将是拟议活动的一部分。更详细地说,第一个项目起源于主丛上的Grothendieck-Serre猜想,该猜想最近由Ivan Panin和PI解决了包含域的环。PI计划将证明扩展到混合特征的情况,并致力于主丛的纯度猜想。在某种意义上,纯度猜想是格罗滕迪克-塞尔猜想之后的下一个逻辑步骤。在第二个项目中,PI打算构造和证明Hitchin系统的局部Langlands对偶,并从局部情况导出Hitchin系统的全局Langlands对偶的一些情况。第三个项目是专门计算主希格斯包的模栈的motivic卷。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Grothendieck-Serre conjecture about principal bundles and its generalizations
关于主丛的格洛滕迪克-塞尔猜想及其推广
  • DOI:
    10.2140/ant.2022.16.447
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Fedorov, Roman
  • 通讯作者:
    Fedorov, Roman
On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic
混合特征主丛上的格洛腾迪克塞尔猜想
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Fedorov其他文献

Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from emKlebsiella pneumoniae/em
肺炎克雷伯氏菌功能性四聚体 UDP-葡萄糖焦磷酸化酶的鉴定与表征
  • DOI:
    10.1128/mbio.02071-24
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
    4.700
  • 作者:
    Isabel Ramón Roth;Pavel Kats;Timm Fiebig;Françoise Routier;Roman Fedorov;Larissa Dirr;Jana I. Führing
  • 通讯作者:
    Jana I. Führing
SnowWatch: A Multi-modal Citizen Science Application
SnowWatch:多模式公民科学应用程序
Switch-2 Dependent Modulation of the Myosin Power Stroke
  • DOI:
    10.1016/j.bpj.2009.12.773
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniela Kathmann;Ralph P. Diensthuber;Falk K. Hartmann;Roman Fedorov;Dietmar J. Manstein;Georgios Tsiavaliaris
  • 通讯作者:
    Georgios Tsiavaliaris
SnowWatch: Snow Monitoring through Acquisition and Analysis of User-Generated Content
SnowWatch:通过采集和分析用户生成的内容进行降雪监测
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Fedorov;P. Fraternali;C. Pasini;M. Tagliasacchi
  • 通讯作者:
    M. Tagliasacchi
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
使用众包网络内容来告知以降雪为主的流域的供水系统运行情况
  • DOI:
    10.5194/hess-20-5049-2016
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    M. Giuliani;A. Castelletti;Roman Fedorov;P. Fraternali
  • 通讯作者:
    P. Fraternali

Roman Fedorov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Fedorov', 18)}}的其他基金

Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
  • 批准号:
    1764391
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
  • 批准号:
    1406532
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
  • 批准号:
    2337451
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics
希格斯丛集的模空间、规范理论及相关主题
  • 批准号:
    2204346
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Moduli space of Higgs Bundles
希格斯丛集的模空间
  • 批准号:
    2742617
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Higgs Bundles, Surface Groups, and Conformal Limits
希格斯丛、表面群和共形极限
  • 批准号:
    2103685
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Higgs Bundles, Real Quasi-Maps, and Automorphic L-Functions
希格斯丛、实拟映射和自同构 L 函数
  • 批准号:
    2001257
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Reconstructing the Thurston theory based on Higgs bundles and its new development
基于希格斯丛集的瑟斯顿理论重构及其新进展
  • 批准号:
    20K20519
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Moduli Spaces of Higgs Bundles, Hermitian-Yang-Mills Connections, and Related Topics
希格斯丛集的模空间、埃尔米特-杨-米尔斯连接以及相关主题
  • 批准号:
    1906403
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
The dynamical interpretation of Higgs bundles on the theta-divisor.
希格斯丛在 theta-divisor 上的动力学解释。
  • 批准号:
    543312-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Branes in the Moduli Space of Higgs Bundles
职业:希格斯丛集模空间中的膜
  • 批准号:
    1749013
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Higgs bundles and dessins d'enfants: new pathways between geometry, physics, and numbers
希格斯粒子束和儿童设计:几何、物理和数字之间的新途径
  • 批准号:
    527709-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了