Curves, Knots, Hilbert schemes, and the Hitchin system
曲线、结、希尔伯特方案和希钦系统
基本信息
- 批准号:1406871
- 负责人:
- 金额:$ 30.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project explores the discovery, by the PI and his collaborators, of surprising interconnections between seemingly disparate questions in mathematics. As always with such discoveries, this understanding facilitates dialogue between previously disconnected fields, with the consequence that well understood structures in one area may be profitably translated into another. Such confluences also offer ideal training grounds for graduate students: there are many new, exciting, and unexplored questions on which to work; at the same time, the answers clarify old and established fields of knowledge.In particular the project centers around a conjecture (due to the PI and collaborators) equating certain algebrao-geometric invariants of plane curve singularities with topological invariants of knots determined by the singularities. Specifically, the former is the local contribution of the singular curve to motivic or categorified Donaldson-Thomas theory, and the latter are the Khovanov-Rozansky homologies. The research project aims at a proof by passing through two other subjects: the theory of Legendrian knots and the non-abelian Hodge correspondence. This intersection of algebraic geometry, symplectic geometry, and low dimensional topology is the only place in mathematics where the quantum SU(n) invariants and their categorifications have ever been seen as coming from the geometry of a knot in space, as opposed to from its planar projections. In addition, the research touches meaningfully on many subjects of present mathematical interest: enumerative geometry as influenced by string theory, the Hitchin system, Khovanov-Rozansky homology, the Cherednik algebra and its representations, legendrian knots and symplectic field theory, and 3-manifold invariants. It may be expected to advance some of these separately by exploiting their connections. In particular the project aims to make progress on the "P = W" conjecture in nonabelian Hodge theory, and on the question in symplectic field theory of whether all representations of the Chekanov-Eliashberg dga come from geometry.The award is co-funded by the Algebra and Number Theory and the Topology programs.
这个研究项目探索了PI和他的合作者发现的数学中看似不同的问题之间令人惊讶的相互联系。与此类发现一样,这种理解促进了先前不相关的领域之间的对话,其结果是,一个领域中已被充分理解的结构可能会被有益地转化为另一个领域。 这样的汇合也为研究生提供了理想的训练场地:有许多新的,令人兴奋的,和未探索的问题,工作;同时,答案澄清了旧的和建立的知识领域。特别是该项目围绕一个猜想(由于PI和合作者)等同于某些代数几何不变量的平面曲线奇点与拓扑不变量的奇点所确定的结。具体地说,前者是奇异曲线对motivic或范畴化的Donaldson-Thomas理论的局部贡献,后者是Khovanov-Rozansky同调。该研究项目旨在通过另外两个主题进行证明:Legendrian knots理论和非阿贝尔Hodge对应。这种代数几何、辛几何和低维拓扑的交叉是数学中唯一一个量子SU(n)不变量和它们的重叠被认为来自空间中的一个结的几何,而不是来自它的平面投影的地方。此外,研究触及有意义的许多主题,目前的数学兴趣:枚举几何的影响弦理论,希钦系统,Khovanov-Rozansky同源,的Cherednik代数及其表示,奥德里德结和辛场理论,和3流形不变量。可以预期,通过利用它们之间的联系,将分别推动其中一些进程。特别是该项目的目标是在非交换霍奇理论中的“P = W”猜想,以及辛场论中的问题上取得进展,即Chekanov-Eliashberg dga的所有表示是否都来自几何。该奖项由代数和数论以及拓扑计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Shende其他文献
Toric mirror symmetry revisited
- DOI:
10.5802/crmath.304 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Vivek Shende - 通讯作者:
Vivek Shende
Vivek Shende的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Shende', 18)}}的其他基金
CAREER: Aspects of Microlocal Geometry
职业:微局域几何的各个方面
- 批准号:
1654545 - 财政年份:2017
- 资助金额:
$ 30.6万 - 项目类别:
Continuing Grant
相似海外基金
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
$ 30.6万 - 项目类别:
Discovery Projects
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
- 批准号:
2240741 - 财政年份:2023
- 资助金额:
$ 30.6万 - 项目类别:
Standard Grant
Studies in knots and 3-manifolds
结和 3 流形的研究
- 批准号:
RGPIN-2020-05491 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Knots, Disks, and Exotic Phenomena in Dimension 4
第 4 维中的结、圆盘和奇异现象
- 批准号:
2204349 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Standard Grant
MPS-Ascend: Bi-Orderability, Fibered Knots, and Cyclic Branched Covers
MPS-Ascend:双向可排序性、纤维结和循环分支覆盖层
- 批准号:
2213213 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Fellowship Award
A study of homological invariants of knots and 3-manifolds
结和3-流形的同调不变量的研究
- 批准号:
22K03318 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of cosmetic surgeries on knots in rational homology spheres
有理同调域中结的整容手术分类
- 批准号:
22K03301 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: From Quantum Droplets & Spinor Solitons to Vortex Knots & Topological States: Beyond the Standard Mean-Field in Atomic BECs
合作研究:来自量子液滴
- 批准号:
2110030 - 财政年份:2021
- 资助金额:
$ 30.6万 - 项目类别:
Standard Grant
A new look into various arithmetic and topological invariants through the eyes of modular knots
从模结的角度重新审视各种算术和拓扑不变量
- 批准号:
21K18141 - 财政年份:2021
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)