Random Polymer Measures

随机聚合物测量

基本信息

  • 批准号:
    1407574
  • 负责人:
  • 金额:
    $ 29.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This proposal is on the interface of probability theory and rigorous aspects of statistical mechanics. The proposed activity aims at investigating the evolution of systems with complex interactions, such as particles moving in a disordered environment, cars navigating their way through traffic, the surface of a growing crystal, or the boundary of an infected tissue. Complexity is captured by the randomness in the model, both in the environment in which the particles interact or the crystal grows, and in the interaction or growth process itself. The aim of the project is to develop the mathematical laws that govern such systems. To have a very simple example in mind, one can think of how the fraction of Heads in a large number of tosses of a coin will converge to the probability of getting Heads in one toss. (The mathematical law behind this basic phenomenon is known as the Law of Large Numbers.) Besides its impact on probability theory and mathematics in general, the proposed activity is expected to have a direct impact on the understanding of many physical systems involving random motion in random or disordered media. Understanding complex interactions has wide implications for science and engineering and thereby for society.The proposed activity is on the subject of random motion in random media. Models in this field have been intensely and concurrently studied by mathematicians, natural scientists, social scientists, and engineers. Their importance arises from rigorous mathematical connections to the celebrated Kardar-Parisi-Zhang (KPZ) equation, and the KPZ universality class. The PI has already established energy-entropy duality and produced solutions to these variational formulas in terms of Busemann functions. In particular, the PI proved almost sure existence of Busemann functions for the growth model with general weight distribution. The PI will next generalize this existence result to positive temperature polymers, as well as higher dimensional models. As a result, KPZ fluctuation exponents become at last accessible for general models, allowing to establish some universal properties for models beyond the narrow set of explicitly solvable cases. This also opens the door to establishing existence of Busemann functions in the continuum setting of the stochastic heat equation, enabling one to deduce global existence of a solution to the stochastic Burgers equation, as well as access KPZ fluctuation results directly rather than through approximation schemes via discrete models.
这项建议是关于概率论和统计力学的严格方面的接口。这项拟议的活动旨在研究具有复杂相互作用的系统的进化,例如粒子在无序环境中移动,汽车在交通中导航,生长的晶体的表面,或受感染组织的边界。复杂性被模型中的随机性所捕捉,无论是在粒子相互作用或晶体生长的环境中,还是在相互作用或生长过程本身中。该项目的目的是开发管理这类系统的数学定律。头脑中有一个非常简单的例子,你可以想一想,在一次抛硬币中,人头的比例如何会聚为一次抛出人头的可能性。(这一基本现象背后的数学定律称为大数定律。)除了对概率论和一般数学的影响外,拟议的活动预计将对许多物理系统的理解产生直接影响,这些系统涉及随机或无序介质中的随机运动。了解复杂的相互作用对科学和工程有广泛的影响,因此对社会也有影响。建议的活动是关于随机介质中的随机运动的主题。数学家、自然科学家、社会科学家和工程师对这一领域的模型进行了深入而同时的研究。它们的重要性源于与著名的Kardar-Parisi-Zhang(KPZ)方程和KPZ普适性类的严格数学联系。PI已经建立了能量-熵对偶,并用Busemann函数给出了这些变分公式的解。特别地,PI证明了具有一般权分布的增长模型的Busemann函数的存在性。PI下一步将把这个存在结果推广到正温度聚合物,以及更高维的模型。结果,KPZ波动指数终于可以用于一般模型,允许建立模型的一些普遍性质,超越了狭隘的显式可解情况集。这也为在随机热方程的连续介质中建立Busemann函数的存在性打开了大门,使得人们能够推导随机Burgers方程解的整体存在性,以及直接获得KPZ涨落结果,而不是通过离散模型的近似方案。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Busemann functions and semi-infinite O’Connell–Yor polymers
Busemann 函数和半无限 OConnell 聚合物
  • DOI:
    10.3150/19-bej1177
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Alberts, Tom;Rassoul-Agha, Firas;Simper, Mackenzie
  • 通讯作者:
    Simper, Mackenzie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Firas Rassoul-Agha其他文献

Phase-locking, quasiperiodicity and chaos in periodically driven noisy neuronal models: a spectral approach
  • DOI:
    10.1186/1471-2202-13-s1-p64
  • 发表时间:
    2012-07-16
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Alla Borisyuk;Firas Rassoul-Agha
  • 通讯作者:
    Firas Rassoul-Agha
Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models
  • DOI:
    10.1007/s00220-016-2613-z
  • 发表时间:
    2016-03-28
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Nicos Georgiou;Firas Rassoul-Agha;Timo Seppäläinen
  • 通讯作者:
    Timo Seppäläinen

Firas Rassoul-Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Firas Rassoul-Agha', 18)}}的其他基金

Random Polymer Measures
随机聚合物测量
  • 批准号:
    2054630
  • 财政年份:
    2021
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Random Polymer Measures
随机聚合物测量
  • 批准号:
    1811090
  • 财政年份:
    2018
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
CAREER: Random Walk in Random Environment
职业:随机环境中的随机游走
  • 批准号:
    0747758
  • 财政年份:
    2008
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stochastic Interactions between Particles and Environments
合作研究:粒子与环境之间的随机相互作用
  • 批准号:
    0505030
  • 财政年份:
    2005
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
  • 批准号:
    2406256
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Continuing Grant
Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
  • 批准号:
    LP220100036
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Linkage Projects
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
  • 批准号:
    EP/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
PERMEATION OF POLYMER FLUIDS IN SOILS (POPFS)
聚合物流体在土壤中的渗透 (POPFS)
  • 批准号:
    EP/X034437/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Research Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
  • 批准号:
    2400010
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    $ 29.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了