Random Polymer Measures
随机聚合物测量
基本信息
- 批准号:2054630
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on the interface of probability theory and statistical mechanics. The activity aims at investigating the evolution of systems with complex interactions, such as particles moving in a disordered environment, cars navigating their way through traffic, the surface of a growing crystal, or the boundary of an infected tissue. Complexity is captured by the randomness in the model, both in the environment in which the particles interact or the crystal grows, and in the interaction or growth process itself. The aim of the project is to develop the mathematical laws that govern such systems. To have a simple example in mind, one can think of how the fraction of heads in a large number of tosses of a coin will converge to the probability of getting heads in one toss. Besides its impact on probability theory and mathematics in general, the project will have a direct impact on the understanding of many physical systems involving motion in random or disordered media. Understanding complex interactions has wide implications for science and engineering and thereby for society. The project provides research training opportunities for graduate students and postdoctoral associates.This research is on the subject of random motion in random media. In his recent work, the PI has focused on the study of random polymer models, both in positive and zero temperature. The overarching theme was establishing energy-entropy duality, producing solutions to these variational formulas in terms of Busemann functions, then using these solutions to describe the large-volume systems. The PI already constructed the Busemann functions in a variety of models and used them to analyze infinite geodesics (or Gibbs measures, in the positive temperature case), establish one-force one-solution principles, and study the stability and instability of the related dynamical systems. In this project, the PI will work on extending these results to a quite general setting that will cover zero and positive temperature, directed and undirected, discrete and continuous, as well as higher-dimensional models. The PI will also develop methods to use Busemann functions to study the regularity of the limiting shape function, prove localization, study the size of the polymer and shape fluctuations, and, for random walk in random environment, describe the structure of the Martin boundary.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是概率论和统计力学的接口。该活动旨在研究具有复杂相互作用的系统的演化,例如在无序环境中移动的粒子,汽车在交通中导航,生长晶体的表面或受感染组织的边界。复杂性被模型中的随机性所捕获,无论是在粒子相互作用或晶体生长的环境中,还是在相互作用或生长过程本身中。该项目的目的是开发管理此类系统的数学定律。举一个简单的例子,我们可以考虑在多次抛硬币中正面朝上的概率如何收敛到一次抛硬币中正面朝上的概率。除了对概率论和数学的影响外,该项目还将对理解许多涉及随机或无序介质中运动的物理系统产生直接影响。理解复杂的相互作用对科学和工程,从而对社会有着广泛的影响。该项目为研究生和博士后提供了研究培训的机会。这项研究的主题是随机介质中的随机运动。在他最近的工作中,PI专注于研究无规聚合物模型,包括正温度和零温度。首要的主题是建立能量-熵对偶性,用Busemann函数求解这些变分公式,然后用这些解来描述大体积系统。PI已经在各种模型中构建了Busemann函数,并使用它们来分析无限测地线(或吉布斯测度,在正温度情况下),建立单力单解原理,并研究相关动力系统的稳定性和不稳定性。在这个项目中,PI将致力于将这些结果扩展到一个相当普遍的设置,将涵盖零和正温度,有向和无向,离散和连续,以及高维模型。PI还将开发使用Busemann函数来研究极限形状函数的规律性的方法,证明局部化,研究聚合物的大小和形状波动,并且,对于随机环境中的随机行走,描述马丁边界的结构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geodesic length and shifted weights in first-passage percolation
- DOI:10.1090/cams/18
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Arjun Krishnan;F. Rassoul-Agha;T. Seppalainen
- 通讯作者:Arjun Krishnan;F. Rassoul-Agha;T. Seppalainen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Firas Rassoul-Agha其他文献
Phase-locking, quasiperiodicity and chaos in periodically driven noisy neuronal models: a spectral approach
- DOI:
10.1186/1471-2202-13-s1-p64 - 发表时间:
2012-07-16 - 期刊:
- 影响因子:2.300
- 作者:
Alla Borisyuk;Firas Rassoul-Agha - 通讯作者:
Firas Rassoul-Agha
Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models
- DOI:
10.1007/s00220-016-2613-z - 发表时间:
2016-03-28 - 期刊:
- 影响因子:2.600
- 作者:
Nicos Georgiou;Firas Rassoul-Agha;Timo Seppäläinen - 通讯作者:
Timo Seppäläinen
Firas Rassoul-Agha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Firas Rassoul-Agha', 18)}}的其他基金
CAREER: Random Walk in Random Environment
职业:随机环境中的随机游走
- 批准号:
0747758 - 财政年份:2008
- 资助金额:
$ 35.78万 - 项目类别:
Continuing Grant
Collaborative Research: Stochastic Interactions between Particles and Environments
合作研究:粒子与环境之间的随机相互作用
- 批准号:
0505030 - 财政年份:2005
- 资助金额:
$ 35.78万 - 项目类别:
Continuing Grant
相似国自然基金
大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
- 批准号:11602270
- 批准年份:2016
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
- 批准号:51302054
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
- 批准号:51105345
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Standard Grant
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
- 批准号:
2339330 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
- 批准号:
2340208 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Continuing Grant
Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
- 批准号:
LP220100036 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Linkage Projects
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
- 批准号:
EP/Y005309/1 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Research Grant
PERMEATION OF POLYMER FLUIDS IN SOILS (POPFS)
聚合物流体在土壤中的渗透 (POPFS)
- 批准号:
EP/X034437/1 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Research Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
- 批准号:
2400010 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
- 批准号:
2403712 - 财政年份:2024
- 资助金额:
$ 35.78万 - 项目类别:
Standard Grant