Collaborative Research: Stochastic Interactions between Particles and Environments

合作研究:粒子与环境之间的随机相互作用

基本信息

  • 批准号:
    0505030
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-15 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

This research is conducted on two fields of stochastic processes: random walk in random environment (RWRE) and interacting particle systems. In the former, a particle is driven by its interaction with the non-homogeneous random medium, while in the latter, the particle interacts with other particles present. In the general RWRE model an environment is a collection of transition probabilities between lattice sites, and it is chosen from some mixing shift-invariant distribution. On the other hand, a class of deposition models, introduced by the first PI, not only provides a unified framework for many well-known particle systems, but also gives a broader view on common phenomena arising in such systems. An object of vital importance in particle systems, in spirit similar to a random walker in random environment, is the so-called second class particle. The main goal of these fields is the understanding of the consequences of the randomness in the environment, or caused by particle-particle interactions, respectively. Among the fundamental questions one can consider are the existence of 0-1 laws, law of large numbers, central limit theorems, large deviations, etc. The two fields are very close in spirit and ideas, just as an example, non-reversibility is a major obstacle in both fields to common applications. Sometimes even direct connections can be established between the two fields through different representations of the same system. This research contains an instance where a surface growth process is shown to be the dual of a RWRE model, allowing the flow of results from the latter to the former. Dual connections within the field of interacting systems are known to be a powerful tool. Analogously, drawing parallels between interacting systems and RWRE's allows for the exchange of methods, insights, and results.Besides the fact that probabilistic intuition and techniques are often of great relevance to other areas of mathematics, this research has a direct impact on probability theory, combinatorics, statistical physics, and the theory of partial differential equations. The fields of random media and interacting systems also have various industrial, agricultural, sociological, and biological applications. Moreover the methods and problems in these fields are often easy to state, while the solutions involve sophisticated tools. This makes the subject appealing to graduate students and young researchers, generating more interest in probability theory.
本文对随机过程的两个领域进行了研究:随机环境中的随机行走(RWRE)和相互作用粒子系统。在前者中,粒子由其与非均匀随机介质的相互作用驱动,而在后者中,粒子与存在的其他粒子相互作用。在一般的RWRE模型中,环境是晶格点之间转移概率的集合,它是从一些混合移位不变分布中选择的。另一方面,由第一次PI引入的一类沉积模型不仅为许多已知的粒子系统提供了统一的框架,而且为这些系统中出现的常见现象提供了更广阔的视角。在粒子系统中有一个极其重要的对象,其精神类似于随机环境中的随机步行者,即所谓的第二类粒子。这些领域的主要目标是理解环境随机性的后果,或者分别由粒子-粒子相互作用引起的后果。人们可以考虑的基本问题包括0-1定律的存在性、大数定律、中心极限定理、大偏差等。这两个领域在精神和思想上非常接近,例如,不可逆性是两个领域共同应用的主要障碍。有时甚至可以通过同一系统的不同表示在这两个领域之间建立直接联系。本研究包含一个实例,其中表面生长过程被证明是RWRE模型的对偶,允许结果从后者流向前者。众所周知,相互作用系统领域中的双重连接是一种强大的工具。类似地,在交互系统和RWRE之间绘制相似之处允许交换方法、见解和结果。除了概率直觉和技术经常与其他数学领域密切相关的事实外,这项研究对概率论、组合学、统计物理和偏微分方程理论有直接影响。随机介质和相互作用系统领域也有各种工业、农业、社会学和生物学应用。此外,这些领域的方法和问题往往很容易表述,而解决方案涉及复杂的工具。这使得这门学科吸引了研究生和年轻的研究人员,对概率论产生了更大的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Firas Rassoul-Agha其他文献

Phase-locking, quasiperiodicity and chaos in periodically driven noisy neuronal models: a spectral approach
  • DOI:
    10.1186/1471-2202-13-s1-p64
  • 发表时间:
    2012-07-16
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Alla Borisyuk;Firas Rassoul-Agha
  • 通讯作者:
    Firas Rassoul-Agha
Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models
  • DOI:
    10.1007/s00220-016-2613-z
  • 发表时间:
    2016-03-28
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Nicos Georgiou;Firas Rassoul-Agha;Timo Seppäläinen
  • 通讯作者:
    Timo Seppäläinen

Firas Rassoul-Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Firas Rassoul-Agha', 18)}}的其他基金

Random Polymer Measures
随机聚合物测量
  • 批准号:
    2054630
  • 财政年份:
    2021
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Random Polymer Measures
随机聚合物测量
  • 批准号:
    1811090
  • 财政年份:
    2018
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Random Polymer Measures
随机聚合物测量
  • 批准号:
    1407574
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
CAREER: Random Walk in Random Environment
职业:随机环境中的随机游走
  • 批准号:
    0747758
  • 财政年份:
    2008
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226347
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
  • 批准号:
    2229345
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
  • 批准号:
    2226348
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了