CAREER: Random Walk in Random Environment

职业:随机环境中的随机游走

基本信息

  • 批准号:
    0747758
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

The PI will continue his work on developing techniques to address important problems in the field of random motion in random media, such as invariance principles, large deviations, etc. In addition, the PI intends to broaden the impact of his research by also applying the theory of diffusion processes to computational neuroscience. As a first step, the PI proposes to study the widely-used integrate-and-fire model with noise and adaptation. The primary questions include existence and stability of stationary solutions in response to a constant or periodically varying input. The proposal also has an educational component; see below.Traditionally, many physical systems are modeled with a diffusion process. It is often the case that the medium in which the diffusion occurs possesses certain inhomogeneities (e.g. an electron moving in an allow, waves diffusing in rocks underground, etc). The inclusion of this property makes the model far more realistic and reveals a wide variety of new effects, not present in constant or periodic media. The main goal of the PI's work is to further theunderstanding of the consequences of this disorder in the medium. Another part of the PI's research stems from his belief in the need for a stronger involvement of mathematical sciences in the explosive growth of biological research. In particular, the complexity of neuronal network models used in Neuroscience makes their modeling a computationally and analytically challenging task. A recent technique for analyzing a class of such networks allows to view the population dynamics as a certain diffusion process. The PI proposes to extend this technique to a wider class of neuronal models, including a feedback (adaptation) mechanism. The results will be applied to specific neurobiological problems, such as localization of moving sound sources and contrast adaptation in vision. The third component in the proposal is educational. The PI will develop new courses, run seminars and workshops involving local budding scientists, organize undergraduate work on research projects, and actively involve graduate students and postdoctoral fellows in his ongoing research.
PI将继续开发技术,以解决随机介质中随机运动领域的重要问题,如不变性原理,大偏差等,此外,PI还打算通过将扩散过程理论应用于计算神经科学来扩大其研究的影响。作为第一步,PI建议研究具有噪声和自适应的广泛使用的集成和火灾模型。主要的问题包括响应于恒定或周期性变化的输入的稳态解的存在性和稳定性。这个提议也有教育的成分;见下文。传统上,许多物理系统都是用扩散过程建模的。通常情况下,发生扩散的介质具有一定的不均匀性(例如,电子在土壤中运动,波在地下岩石中扩散等)。包含此属性使模型更加逼真,并揭示了各种各样的新效果,不存在于恒定或周期性介质中。 PI工作的主要目标是进一步了解这种疾病在媒介中的后果。 PI研究的另一部分源于他的信念,即需要数学科学更有力地参与生物研究的爆炸性增长。特别是,神经科学中使用的神经元网络模型的复杂性使得它们的建模在计算和分析上具有挑战性。 最近的技术分析一类这样的网络允许查看人口动态作为一个特定的扩散过程。PI建议将这种技术扩展到更广泛的神经元模型,包括反馈(适应)机制。 研究结果将应用于特定的神经生物学问题,如移动声源的定位和视觉的对比度适应。 建议的第三个组成部分是教育。PI将开发新的课程,举办研讨会和讲习班,让当地崭露头角的科学家参与,组织本科生的研究项目,并积极让研究生和博士后研究员参与他正在进行的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Firas Rassoul-Agha其他文献

Phase-locking, quasiperiodicity and chaos in periodically driven noisy neuronal models: a spectral approach
  • DOI:
    10.1186/1471-2202-13-s1-p64
  • 发表时间:
    2012-07-16
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Alla Borisyuk;Firas Rassoul-Agha
  • 通讯作者:
    Firas Rassoul-Agha
Variational Formulas and Cocycle solutions for Directed Polymer and Percolation Models
  • DOI:
    10.1007/s00220-016-2613-z
  • 发表时间:
    2016-03-28
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Nicos Georgiou;Firas Rassoul-Agha;Timo Seppäläinen
  • 通讯作者:
    Timo Seppäläinen

Firas Rassoul-Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Firas Rassoul-Agha', 18)}}的其他基金

Random Polymer Measures
随机聚合物测量
  • 批准号:
    2054630
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Random Polymer Measures
随机聚合物测量
  • 批准号:
    1811090
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Random Polymer Measures
随机聚合物测量
  • 批准号:
    1407574
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stochastic Interactions between Particles and Environments
合作研究:粒子与环境之间的随机相互作用
  • 批准号:
    0505030
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: An Algorithm and System Co-Designed Framework for Graph Sampling and Random Walk on GPUs
职业生涯:用于 GPU 上的图形采样和随机游走的算法和系统协同设计框架
  • 批准号:
    2326141
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Grants Program - Individual
RINGS: Walk For Resiliency & Privacy: A Random Walk Framework for Learning at the Edge
RINGS:步行以增强弹性
  • 批准号:
    2148182
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: An Algorithm and System Co-Designed Framework for Graph Sampling and Random Walk on GPUs
职业生涯:用于 GPU 上的图形采样和随机游走的算法和系统协同设计框架
  • 批准号:
    2046102
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
The computation of the stationary distribution in random-walk-type Markov chains: via unraveling the trinity of stability
随机游走型马尔可夫链中平稳分布的计算:通过解开稳定性三位一体
  • 批准号:
    21K11770
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Grants Program - Individual
Random walk and a binary tree in the Cayley graph
凯莱图中的随机游走和二叉树
  • 批准号:
    552181-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Connectivity functions for random walk percolation models
随机游走渗滤模型的连通函数
  • 批准号:
    2442363
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Studentship
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Discovery Grants Program - Individual
Motile colloids with tunable random walk: individual dynamics and collective behavior
具有可调随机游走的运动胶体:个体动力学和集体行为
  • 批准号:
    2004926
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了