Quantum optical resonators: a building block for quantum computing and sensing systems
量子光学谐振器:量子计算和传感系统的构建模块
基本信息
- 批准号:1408429
- 负责人:
- 金额:$ 34.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum optical resonators: a building block for quantum computing and sensing systemsQuantum effects have the potential to revolutionize computing, communication and measurement systems. Photons are particularly well suited for the communication of quantum information, commonly known as qubits, since photons can transmit over long distances with minimal information loss. However, it has been challenging to use photons to realize quantum computers since one photon cannot easily control another photon. Fortunately, it was discovered by Knill, Laflamme and Milburn (KLM) that when photons interfere within linear optical elements, such as beam splitters, and are then detected that it is possible to realize an effective control of another photon. However, this breakthrough comes at the cost of requiring many additional optical devices that take up a lot of space on large optical tables, and as a result, have limited the performance of quantum optical computers so far. Recently, attempts have been made to miniaturize quantum optical devices onto microchips in order to densely integrate all of the necessary components and to maximize performance. In this project, the footprint of quantum optical circuits will be significantly reduced further through the development of a new class of quantum optical devices based on resonant optical cavities. These resonators effectively force photons to propagate many times around in a small space of just a few micrometers. The research team recently discovered that when the resonators are excited with just a few photons that the photons interfere quantum optically in surprising new ways. Specifically, this new quantum resonant interference depends on the photon excitation itself, opening up the possibility to develop new quantum computing gates. Furthermore, it has been found that this quantum interference is more robust than in traditional optical components, such as beam splitters. These quantum optical resonators can also be used to more than double the sensitivity of optical sensors used for biological, chemical and environmental sensing. The primary goal of the project is to realize scalable quantum optical computing circuits based on resonant quantum optical logic gates. The research team has recently shown that ring resonators operating in the quantum regime exhibit a resonant response that depends on the photon state. Unlike beam splitters, which operate with maximum fidelity with only one set of parameters, this unique passive feedback in ring resonators ensures high fidelity quantum interference over, effectively, an infinite device parameter space. The devices compact size and ability to be reconfigured dynamically with low energy requirements ensures that ring resonators are the ideal building block for realizing complex quantum optical circuits. In this project the following key advancements will be made: (1) Experimental demonstration of robust quantum interference in a ring resonator. Specifically, it will be shown that when two photons interact within a ring resonator a novel Hong-Ou-Mandel (HOM) resonance occurs where the two photons can either bunch together or stay apart. (2) The first universal quantum logic gates based on resonators will be developed. And the parameter space that the logic gates can operate over will be explored with the goal of increasing overall circuit robustness. (3) Multi-photon interference in resonators will be used to enhance sensing. Specifically, the quantum phase response of the resonator can vary much more strongly than with classical light. This can be used to realize ultra-sensitive biological, chemical and environmental sensors.
量子光学谐振器:量子计算和传感系统的基石量子效应有可能给计算、通信和测量系统带来革命性的变化。光子特别适合于量子信息的通信,通常被称为量子比特,因为光子可以在信息损失最小的情况下远距离传输。然而,使用光子来实现量子计算机一直是一个挑战,因为一个光子不能轻易控制另一个光子。幸运的是,Knill,Laflamme和Milburn(KLM)发现,当光子在线性光学元件(如分束器)内干涉并随后被检测到时,有可能实现对另一个光子的有效控制。然而,这一突破是以需要许多额外的光学设备为代价的,这些光学设备占用了大型光学桌子上的大量空间,因此限制了量子光学计算机到目前为止的性能。最近,人们试图将量子光学设备微型化到微芯片上,以便密集地集成所有必要的组件,并最大化性能。在这个项目中,通过开发一类基于共振光学腔的新型量子光学器件,量子光学电路的足迹将进一步显著减少。这些谐振器有效地迫使光子在几微米的小空间内多次传播。研究小组最近发现,当谐振器被几个光子激发时,光子以令人惊讶的新方式干涉量子光学。具体地说,这种新的量子共振干涉依赖于光子激发本身,为开发新的量子计算门打开了可能性。此外,人们还发现,这种量子干涉比传统光学元件(如分束器)更可靠。这些量子光学谐振器还可以用来将用于生物、化学和环境传感的光学传感器的灵敏度提高一倍以上。该项目的主要目标是基于共振量子光学逻辑门实现可扩展的量子光计算电路。该研究小组最近表明,在量子状态下工作的环形谐振器表现出依赖于光子状态的共振响应。与分束器不同,分束器只用一组参数就能最大限度地保真工作,而环形谐振器中的这种独特的被动反馈可以有效地确保无限设备参数空间的高保真量子干涉。器件紧凑的尺寸和低能量要求的动态重新配置的能力确保了环形谐振器是实现复杂量子光学电路的理想构建块。在本项目中,将取得以下关键进展:(1)实验演示了环形腔中的强健量子干涉。具体地说,当两个光子在环形谐振器内相互作用时,会发生一种新颖的Hong-Ou-Mandel(Hom)共振,其中两个光子可以聚集在一起,也可以分开。(2)将开发第一个基于谐振器的通用量子逻辑门。并将探索逻辑门可以操作的参数空间,以提高整体电路的稳健性。(3)将利用谐振器中的多光子干涉来增强传感。具体地说,谐振器的量子相位响应比经典光的变化要大得多。这可用于实现超灵敏的生物、化学和环境传感器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Preble其他文献
Stefan Preble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Preble', 18)}}的其他基金
PIC: Hybrid Silicon Electronic-Photonic Integrated Neuromorphic Networks
PIC:混合硅电子-光子集成神经形态网络
- 批准号:
1810282 - 财政年份:2018
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Collaborative Research: High Performance Integrated InAs QD Laser Based Si Photonics Optical Transceiver
合作研究:基于砷化镓量子点激光器的高性能集成硅光子光收发器
- 批准号:
1309230 - 财政年份:2013
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Ultracompact Graphene Optical Modulators
超紧凑石墨烯光调制器
- 批准号:
1308197 - 财政年份:2013
- 资助金额:
$ 34.98万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Scanning Probe Microscopy System for Nanoscale Probing, Manipulation and Fabrication
MRI:获取用于纳米级探测、操作和制造的扫描探针显微镜系统
- 批准号:
0923298 - 财政年份:2009
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Single Photon Adiabatic Wavelength Converter on a Silicon Chip
硅芯片上的单光子绝热波长转换器
- 批准号:
0824103 - 财政年份:2008
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
阵风场中非定常大气湍流对沙粒跃移运动的影响
- 批准号:11102153
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于两级表面等离子共振增强结构的高灵敏度拉曼散射成像物理机制及制作工艺研究
- 批准号:61007018
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
基于回廊耳语模式的非圆对称光学微谐振腔的发光特性及传感性能研究
- 批准号:10574032
- 批准年份:2005
- 资助金额:33.0 万元
- 项目类别:面上项目
基于软光刻法的光学互连耦合结构研究
- 批准号:60477019
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
新型液晶可变光衰减器的研制
- 批准号:60377019
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
利用混合遗传算法从多方位光流场恢复3D运动与结构的研究
- 批准号:60305003
- 批准年份:2003
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
电极/溶液界面上分子取向电位调控的准确测量
- 批准号:20373076
- 批准年份:2003
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Bioinspired optical sniffer based on microtoroid resonators and science and technology convergence
职业:基于微环形谐振器和科技融合的仿生光学嗅探器
- 批准号:
2237077 - 财政年份:2023
- 资助金额:
$ 34.98万 - 项目类别:
Continuing Grant
A study on integrated nonreciprocal devices using disk resonators and magneto-optical materials
使用盘式谐振器和磁光材料的集成不可逆器件的研究
- 批准号:
23K03977 - 财政年份:2023
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10506889 - 财政年份:2022
- 资助金额:
$ 34.98万 - 项目类别:
Microwave to optical quantum transducer using mechanical resonators
使用机械谐振器的微波到光学量子传感器
- 批准号:
576636-2022 - 财政年份:2022
- 资助金额:
$ 34.98万 - 项目类别:
Alliance Grants
Enhanced radiative energy tunneling with dielectric optical resonators and its usage in harvesting thermal energy inside a solid
使用介电光学谐振器增强辐射能量隧道及其在固体内部收集热能中的用途
- 批准号:
2117953 - 财政年份:2022
- 资助金额:
$ 34.98万 - 项目类别:
Standard Grant
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10668494 - 财政年份:2022
- 资助金额:
$ 34.98万 - 项目类别:
Optical Filtering with Two-Dimensional Coupled Resonators: Increased Performance Through Increased Dimensionality
使用二维耦合谐振器进行光学滤波:通过增加维度来提高性能
- 批准号:
552898-2020 - 财政年份:2020
- 资助金额:
$ 34.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Magneto-optical metamaterials consisting of antiferromagnetically coupled plasmon resonators for ultra-sensitive chiral molecular measurement systems
由反铁磁耦合等离子体谐振器组成的磁光超材料,用于超灵敏手性分子测量系统
- 批准号:
20K05375 - 财政年份:2020
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring surface nanoscale axial photonics resonators for ultrahigh-resolution optical gyroscope applications
探索用于超高分辨率光学陀螺仪应用的表面纳米级轴向光子谐振器
- 批准号:
542549-2019 - 财政年份:2019
- 资助金额:
$ 34.98万 - 项目类别:
Engage Grants Program
Demonstration of terahertz lasers utilizing superconducting Josephson junctions in optical resonators
在光学谐振腔中利用超导约瑟夫森结演示太赫兹激光器
- 批准号:
19H02540 - 财政年份:2019
- 资助金额:
$ 34.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)