Quantum electron solids and interaction-driven phenomena in two- and one-dimensional systems

二维和一维系统中的量子电子固体和相互作用驱动的现象

基本信息

  • 批准号:
    1410302
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical: Electrons are tiny quantum mechanical objects that exist in all physical systems and most systems contain a large number of them. Understanding how electrons interact with each other and with the environment is a vital scientific subject and has played a critical role in advancing modern science and technologies. Analogous to water, electrons manifest both gaseous states at high temperatures and liquid states at low temperatures. Another form is a solid state which was predicted but never observed. To obtain evidence of this solid state of electrons is not only important in understanding how the most basic force can radically affect the quantum states, but also allows scientists to develop remarkable future quantum electronics and spintronics. These energy sustainable systems are fundamentally important to nature. With greatly improved semiconductor technologies, a novel type of semiconductors of ultra-high purity has become available as a result of a recent breakthrough and preliminary results have been recently obtained as evidence of a genuine quantum electron solid. This project utilizes such devices to perform experiments with the most advanced scientific tools: nanofabrication and ultra-low temperature physics. The goal is to capture the direct evidence for the quantum mechanical mechanisms in the dynamical properties. This project supports the education of one Ph.D. student in pursuing discovery and advanced technologies, and allows the group to conduct outreach activities with local high schools. Technical: Remarkable new quantum phenomena, such as the even-denominator Fractional Quantum Hall Effect and Topological Insulators, emerge in response to strong inter-particle Coulomb interaction. However, the most prominent interaction-driven effect, Wigner crystallization of electrons, has not been well established. This fascinating quantum matter (with spin ordering) is not only paramount to fundamental science, but also important for future applications including quantum electronics and spintronics. For a long time, experimental effort was hindered because most devices contain a high level of unwanted disorder which overwhelms the interaction effect at low electron densities. Since 2003, breakthroughs have been made in providing ultra-high quality two-dimensional electron systems in GaAs semiconductor field-effect-transistors. Recent achievement with the measurement of ultrahigh purity GaAs field-effect transistors (named HIGFET) has led to the observation of a genuine WC. Moreover, the preliminary results also point to possible quantum pinning/depinning mechanisms that are not understood. This project utilizes these types of devices with record low electron densities to perform transport experiments at mK temperatures. The goal is to verify the quantum nature of the dynamical properties well below the classical limits. Various techniques such varying temperature, density, and interaction are adopted to study the phase boundaries. AC+DC excitation technique is utilized to directly probe the collective, large-scale quantum tunneling in a Wigner Crystal. This project supports the education of one Ph.D. student in pursuing discovery and in learning advanced technologies, which are indispensable for excellent training in pursuing scientific careers.
非技术性:电子是所有物理系统中存在的微小量子机械对象,并且大多数系统都包含大量它们。了解电子如何相互互动以及与环境是一个至关重要的科学主题,并且在推进现代科学和技术方面发挥了关键作用。类似于水,电子在高温下在高温下表现出气态状态。另一种形式是预测但从未观察到的固态。为了获得这种固态电子状态的证据,不仅在理解最基本的力量如何从根本上影响量子状态的情况很重要,而且还允许科学家开发出显着的未来量子电子和旋转型。这些能源可持续系统对自然至关重要。 随着半导体技术的大大改进,由于最近的突破和初步结果,已获得了一种新型的超高纯度半导体类型,作为真正的量子电子固体的证据。该项目利用此类设备可以使用最先进的科学工具进行实验:纳米制作和超低温度物理。目的是捕获动力学特性中量子机械机制的直接证据。该项目支持一所博士学位的教育。学生追求发现和高级技术,并允许小组与当地高中进行外展活动。技术:显着的新量子现象,例如均匀的分数量子霍尔效应和拓扑绝缘子,响应强烈的粒子间库仑相互作用而出现。 但是,最突出的相互作用驱动的效应,电子的智慧结晶尚未得到很好的确定。这种引人入胜的量子物质(带有旋转顺序)不仅对基本科学至关重要,而且对于包括量子电子和旋转的未来应用也很重要。长期以来,由于大多数设备都包含高水平的不良疾病,这会阻碍实验性的努力,从而使低电子密度下的相互作用效果不堪重负。自2003年以来,在GAAS半导体野外效应 - 传播器中提供超高质量的二维电子系统方面取得了突破。通过测量超高纯度GAAS场效应晶体管(名为Higfet)的最新成就导致了真正的WC的观察。此外,初步结果还指出了尚不清楚的可能的量子固定机制。该项目利用这些类型的设备具有创纪录的低电子密度来在MK温度下进行运输实验。目标是验证远低于经典限制的动力学特性的量子性质。采用了各种技术,例如温度,密度和相互作用来研究相边界。 AC+DC激发技术用于直接探测Wigner晶体中的集体大规模量子隧道。 该项目支持一所博士学位的教育。学生追求发现和学习高级技术,这对于从事科学职业的出色培训是必不可少的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Huang其他文献

Massively Parallel and Distributed Visualization of Neuronal Fibers in Diffusion Tensor MRI Enabled by Logistical Computing and Internetworking
通过逻辑计算和网络互联实现扩散张量 MRI 中神经元纤维的大规模并行和分布式可视化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Micah Beck;Jian Huang;Yong Zheng;Jean;T. Moore;Nathaniel Fout;Z. Ding
  • 通讯作者:
    Z. Ding
Mobile olfaction robot odor source localization based on wireless sensor network
基于无线传感器网络的移动嗅觉机器人气味源定位
Regularized biomarker selection in microarray meta-analysis
微阵列荟萃分析中的常规生物标志物选择
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuangge Ma;Jian Huang
  • 通讯作者:
    Jian Huang
Revealing the stability and optoelectronic properties of novel nitride and phosphide semiconductors: A DFT prediction
揭示新型氮化物和磷化物半导体的稳定性和光电特性:DFT 预测
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Diwen Liu;Huan Peng;Jian Huang;Rongjian Sa
  • 通讯作者:
    Rongjian Sa
NONO inhibits lymphatic metastasis of bladder cancer via alternative splicing of SETMAR
NONO 通过 SETMAR 的选择性剪接抑制膀胱癌的淋巴转移。
  • DOI:
    10.1016/j.ymthe.2020.08.018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Ruihui Xie;Xu Chen;Liang Cheng;Ming Huang;Qianghua Zhou;Jingtong Zhang;Yuelong Chen;Shengmeng Peng;Ziyue Chen;Wen Dong;Jian Huang;Tianxin Lin
  • 通讯作者:
    Tianxin Lin

Jian Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Huang', 18)}}的其他基金

Collaborative Research: Elements: Towards A Scalable Infrastructure for Archival and Reproducible Scientific Visualizations
协作研究:要素:建立用于存档和可重复科学可视化的可扩展基础设施
  • 批准号:
    2209767
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Towards Learning-Based Storage Systems with Hardware-Software Co-Design
职业:通过软硬件协同设计实现基于学习的存储系统
  • 批准号:
    2144796
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
EAGER: CRYO: Continuous Adiabatic Demagnetization Refrigeration Below 1K without Helium-3
EAGER:CRYO:连续绝热退磁制冷低于 1K,无需 Helium-3
  • 批准号:
    2232489
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating multi-dimensional omics data for quantifying disease heterogeneity
协作研究:整合多维组学数据以量化疾病异质性
  • 批准号:
    1916199
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scaling the Software-Defined Data Center with Network-Storage Stack Co-Design
SPX:协作研究:通过网络存储堆栈协同设计扩展软件定义的数据中心
  • 批准号:
    1919044
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CRII: CSR: System Techniques to Exploit the Byte-Accessibility of Solid-State Drives
CRII:CSR:利用固态硬盘字节可访问性的系统技术
  • 批准号:
    1850317
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
  • 批准号:
    1629890
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Constrained Group Selection and Structure Estimation in Semiparametric Models
半参数模型中的约束组选择和结构估计
  • 批准号:
    1208225
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Undergraduate Training at NSF Teragrid XD RDAV Center
NSF Teragrid XD RDAV 中心的本科生培训
  • 批准号:
    1136246
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Electron-Electron Interaction Driven Phase Transition in Low Dimensional Systems
低维系统中电子-电子相互作用驱动的相变
  • 批准号:
    1105183
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

固体系统中电子纠缠态的高效制备与调控
  • 批准号:
    11504171
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
复杂混合价态无机固体材料的合成与性能
  • 批准号:
    20871025
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
固体环境中电子的量子混沌动力学研究
  • 批准号:
    10874027
  • 批准年份:
    2008
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
固体中纳米尺度微结构的电子态
  • 批准号:
    10775053
  • 批准年份:
    2007
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
有机固体与分子器件的电子过程
  • 批准号:
    90503013
  • 批准年份:
    2005
  • 资助金额:
    58.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Development of functional materials based on electron-deficient carbon networks
基于缺电子碳网络的功能材料的开发
  • 批准号:
    21K05027
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and verification of electromagnetic duality in Dirac electron systems
狄拉克电子系统电磁对偶性的理论与验证
  • 批准号:
    21K03426
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of charge and strain of diamond crystal and elucidation of limiting factor of electron spin coherence time
金刚石晶体电荷和应变的控制及电子自旋相干时间限制因素的阐明
  • 批准号:
    20H02187
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of innovative thermoelectric materials based on the strongly-correlated electron system in transition-metal oxides
基于过渡金属氧化物中强相关电子系统的创新热电材料的开发
  • 批准号:
    19K05019
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of Organic Photoluminescent Solid Using Characteristics of Condensed Pai-Electron Systems
利用凝聚态电子体系的特性制备有机光致发光固体
  • 批准号:
    17K05796
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了