Electron-Electron Interaction Driven Phase Transition in Low Dimensional Systems
低维系统中电子-电子相互作用驱动的相变
基本信息
- 批准号:1105183
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****The study of the many-body electron systems encompasses two of the most fundamental subjects: electron-electron interaction and electron-disorder interaction. It is well known that sufficient disorder causes electron states to undergo Anderson Transition. On the other hand, whether strong electron-electron interaction also brings radical changes, such as the predicted Wigner Crystallization (electron solid), is still unknown. For a long time, experimental effort was hindered because most devices contain a high level of unwanted disorder which overwhelms the interaction effect at low electron densities. Recent breakthroughs have been made in providing ultra-high quality two-dimensional electron systems in GaAs semiconductor field-effect-transistors. This project will utilize this type of devices with record low electron densities to perform transport experiments at low temperatures. The goal is to verify whether strong electron-electron interaction drives a first-order phase transition (Wigner crystallization) or some intermediate phases. Either observation will provide insights in understanding the quantum mechanical nature of strongly interacting electrons in the form of a solid or a strongly correlated liquid. This project will support the education of one Ph.D. student in pursuing discovery and in learning most advanced technologies, which has historically shown to be excellent training for scientific careers.****Non-Technical Abstract****Electrons are quantum mechanical objects that exist in all physical systems and most systems contain a large number of them. Understanding the states of electrons, how they interact with the environment and each other, is a vital scientific subject and has played a critical role in advancing modern science and technologies. Analogous to water, electrons manifest both gaseous states at high temperatures and liquid states at low temperatures. Another form of the states is solid which was predicted but never observed. To obtain evidence of this solid state of electrons is not only important to understand how the most basic force among the electrons can radically affect the quantum states, but also allow scientists to utilize remarkable properties in developing quantum electronics and spintronics. As nanotechnology marks the opening of the 21st century, semiconductor technologies have greatly improved. A novel type of semiconductors of ultra-high purity has become available as a result of a recent breakthrough. This project will utilize such devices to perform experiments with the most advanced scientific tools: nanofabrication and ultra-low temperature physics. The goal is to capture direct evidences that either indicate an electron solid, or some other complex states. This project will support the education of one Ph.D. student in pursuing discovery and in learning most advanced technologies, and allow the group to conduct outreach activities with local high schools.
****技术摘要****多体电子系统的研究涵盖了两个最基本的主题:电子电子相互作用和电子disorder互动。众所周知,足够的疾病会导致电子状态进行安德森过渡。另一方面,强烈的电子电子相互作用是否还带来了根治性的变化,例如预测的Wigner结晶(电子固体)仍然未知。长期以来,由于大多数设备都包含高水平的不良疾病,这会阻碍实验性的努力,从而使低电子密度下的相互作用效果不堪重负。最近在GAAS半导体野外效应 - 传播器中提供超高质量的二维电子系统方面取得了突破。该项目将利用具有创纪录的低电子密度的这种类型的设备在低温下进行运输实验。目的是验证强的电子电子相互作用是驱动一阶相变(Wigner结晶)还是某些中间相。任何一个观察结果都将提供见解,以理解以固体或强相关液体形式的强相互作用的量子机械性质。该项目将支持一项博士学位的教育。在追求发现和学习最先进的技术方面,学生在历史上证明是对科学职业的出色培训。了解电子的状态,它们如何与环境互动,是一个至关重要的科学主题,并且在推进现代科学和技术方面发挥了关键作用。类似于水,电子在高温下在高温下表现出气态状态。状态的另一种形式是坚固的,这是预测但从未观察到的。为了获得这种固态的电子状态,不仅要了解电子中最基本的力量如何从根本上影响量子状态,而且还允许科学家在开发量子电子和纺纱型中利用显着的特性。由于纳米技术标志着21世纪的开放,半导体技术已大大改善。由于最近的突破,已经获得了一种新型的超高纯度半导体。该项目将利用此类设备使用最先进的科学工具进行实验:纳米制作和超低温度物理。目的是捕获指示电子固体或其他一些复杂状态的直接证据。该项目将支持一项博士学位的教育。学生追求发现和学习最先进的技术,并允许小组与当地高中进行外展活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Huang其他文献
Massively Parallel and Distributed Visualization of Neuronal Fibers in Diffusion Tensor MRI Enabled by Logistical Computing and Internetworking
通过逻辑计算和网络互联实现扩散张量 MRI 中神经元纤维的大规模并行和分布式可视化
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Micah Beck;Jian Huang;Yong Zheng;Jean;T. Moore;Nathaniel Fout;Z. Ding - 通讯作者:
Z. Ding
Mobile olfaction robot odor source localization based on wireless sensor network
基于无线传感器网络的移动嗅觉机器人气味源定位
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qiangqiang Qi;Lei Cheng;Huaiyu Wu;Nian Liu;Jian Huang;Yongji Wang - 通讯作者:
Yongji Wang
Regularized biomarker selection in microarray meta-analysis
微阵列荟萃分析中的常规生物标志物选择
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Shuangge Ma;Jian Huang - 通讯作者:
Jian Huang
Revealing the stability and optoelectronic properties of novel nitride and phosphide semiconductors: A DFT prediction
揭示新型氮化物和磷化物半导体的稳定性和光电特性:DFT 预测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.2
- 作者:
Diwen Liu;Huan Peng;Jian Huang;Rongjian Sa - 通讯作者:
Rongjian Sa
NONO inhibits lymphatic metastasis of bladder cancer via alternative splicing of SETMAR
NONO 通过 SETMAR 的选择性剪接抑制膀胱癌的淋巴转移。
- DOI:
10.1016/j.ymthe.2020.08.018 - 发表时间:
2020 - 期刊:
- 影响因子:12.4
- 作者:
Ruihui Xie;Xu Chen;Liang Cheng;Ming Huang;Qianghua Zhou;Jingtong Zhang;Yuelong Chen;Shengmeng Peng;Ziyue Chen;Wen Dong;Jian Huang;Tianxin Lin - 通讯作者:
Tianxin Lin
Jian Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Huang', 18)}}的其他基金
Collaborative Research: Elements: Towards A Scalable Infrastructure for Archival and Reproducible Scientific Visualizations
协作研究:要素:建立用于存档和可重复科学可视化的可扩展基础设施
- 批准号:
2209767 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CAREER: Towards Learning-Based Storage Systems with Hardware-Software Co-Design
职业:通过软硬件协同设计实现基于学习的存储系统
- 批准号:
2144796 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
EAGER: CRYO: Continuous Adiabatic Demagnetization Refrigeration Below 1K without Helium-3
EAGER:CRYO:连续绝热退磁制冷低于 1K,无需 Helium-3
- 批准号:
2232489 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: Integrating multi-dimensional omics data for quantifying disease heterogeneity
协作研究:整合多维组学数据以量化疾病异质性
- 批准号:
1916199 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scaling the Software-Defined Data Center with Network-Storage Stack Co-Design
SPX:协作研究:通过网络存储堆栈协同设计扩展软件定义的数据中心
- 批准号:
1919044 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CRII: CSR: System Techniques to Exploit the Byte-Accessibility of Solid-State Drives
CRII:CSR:利用固态硬盘字节可访问性的系统技术
- 批准号:
1850317 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
- 批准号:
1629890 - 财政年份:2016
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Quantum electron solids and interaction-driven phenomena in two- and one-dimensional systems
二维和一维系统中的量子电子固体和相互作用驱动的现象
- 批准号:
1410302 - 财政年份:2014
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Constrained Group Selection and Structure Estimation in Semiparametric Models
半参数模型中的约束组选择和结构估计
- 批准号:
1208225 - 财政年份:2012
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Undergraduate Training at NSF Teragrid XD RDAV Center
NSF Teragrid XD RDAV 中心的本科生培训
- 批准号:
1136246 - 财政年份:2011
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
相似国自然基金
季节变化驱动下粘土矿物界面Fe(II)/Fe(III)与As相互作用行为研究
- 批准号:41807206
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
超强激光驱动μ子源的模拟与实验研究
- 批准号:11805182
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
复杂等离子体通道中激光驱动电子加速与辐射特性研究
- 批准号:11865014
- 批准年份:2018
- 资助金额:44.0 万元
- 项目类别:地区科学基金项目
超强激光驱动近临界密度等离子体中的QED效应研究
- 批准号:11875319
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
相对论飞秒激光驱动产生高品质正电子源研究
- 批准号:11705261
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of evaluation methods for ion/electron temperature fluctuation and fluctuation-driven heat flux in plasma
等离子体中离子/电子温度波动和波动驱动热通量评估方法的开发
- 批准号:
20J12625 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conceptual demonstration of electron optical system with surface electrromagnetic waves driven by high-intensity laser
高强度激光驱动表面电磁波电子光学系统概念演示
- 批准号:
16H02127 - 财政年份:2016
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Simulation of laser-driven many-electron atoms and molecules
激光驱动的多电子原子和分子的模拟
- 批准号:
15K17805 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Quantum electron solids and interaction-driven phenomena in two- and one-dimensional systems
二维和一维系统中的量子电子固体和相互作用驱动的现象
- 批准号:
1410302 - 财政年份:2014
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Statistical Picture of hysteresis characteristics of transition phenomena in steady state current drive plasma
稳态电流驱动等离子体过渡现象滞后特性统计图
- 批准号:
15206105 - 财政年份:2003
- 资助金额:
$ 34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)