Constrained Group Selection and Structure Estimation in Semiparametric Models
半参数模型中的约束组选择和结构估计
基本信息
- 批准号:1208225
- 负责人:
- 金额:$ 15.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This application proposes a class of novel constrained group selection methods in high-dimensional models when there are natural constraints on the parameters. The proposed project is expected to stimulate new research directions for studying several important statistical modeling and analysis problems, which include structure estimation and variable selection in semiparametric additive models, varying coefficient models, and survival analysis models in high-dimensional settings where the number of variables is larger than the sample size. The proposed project will also yield new methods for integrative analysis of multiple genomic datasets and genome wide association studies. Theoretical properties of the proposed methods in high-dimensional settings and computational algorithms will be developed. Analysis of high-dimensional data presents new and challenging theoretical and computational questions in statistics. Standard methods assuming the number of variables is fixed and much smaller than the sample size are not applicable to high-dimensional models. The proposed methods are expected to be able to correctly select the important groups and correctly estimate model structures with high probability in sparse, high-dimensional settings. High-dimensional data arise in many diverse fields of sciences and humanities, including biology, economics, finance, information technology, and health sciences. In all these fields, feature selection is a crucial step in the process of knowledge discovery from data. In genetic and genomic research, with rapid advances in biotechnology, more and more big data sets are being generated. The identification of statistically and biologically significant patterns from high-dimensional and noisy data sets is becoming a major challenge. The development of statistical methods that can deal with high-dimensional problems in estimating the relationship between clinical outcomes and genetic data will contribute to better understanding of the genetic basis of diseases, better diagnoses, and better survival prediction. The proposed methods will be applied to the analysis of high-dimensional censored survival data, longitudinal data, genome wide association studies (GWAS) and integrative analysis of multiple genomic datasets. Censored and longitudinal data arise in many clinical and biomedical studies. GWAS and integrative analysis are important methods for identifying disease susceptibility genes for common and complex diseases. The ultimate goal of clinical and genetic research is to understand the relationships between risk factors and phenotypes for developing new approaches to prevention, diagnosis and treatment of disease. This project aims to translate novel statistical approaches into new methodologies for analyzing high-dimensional clinical and genomic data that are important in achieving this goal. The methods and results from the proposed project will be incorporated into a graduate course on high-dimensional data analysis. The investigator will broadly disseminate the results to the scientific community by submitting papers to scientific journals and making them and the computer programs publicly available on the internet. The investigator will also present the results in scientific conferences and workshops.
本申请提出了一类新的约束组选择方法在高维模型的参数时,有自然的约束。预计该项目将激发新的研究方向,研究几个重要的统计建模和分析问题,其中包括半参数加性模型,变系数模型和生存分析模型中的结构估计和变量选择在高维设置的变量的数量大于样本容量。该项目还将为多个基因组数据集的综合分析和全基因组关联研究提供新的方法。所提出的方法在高维设置和计算算法的理论属性将被开发。高维数据的分析提出了新的和具有挑战性的统计理论和计算问题。假设变量数量固定且远小于样本大小的标准方法不适用于高维模型。所提出的方法预计能够正确地选择重要的群体,并正确地估计模型结构,在稀疏,高维设置的高概率。高维数据出现在许多不同的科学和人文领域,包括生物学,经济学,金融,信息技术和健康科学。在所有这些领域中,特征选择是从数据中发现知识的过程中的关键步骤。在基因和基因组研究方面,随着生物技术的迅速发展,正在产生越来越多的大数据集。从高维和噪声数据集中识别统计和生物学上有意义的模式正成为一个主要的挑战。在估计临床结果和遗传数据之间的关系时,可以处理高维问题的统计方法的发展将有助于更好地理解疾病的遗传基础,更好的诊断和更好的生存预测。该方法可应用于高维删失生存数据、纵向数据、全基因组关联研究(GWAS)和多基因组数据集的综合分析。删失和纵向数据出现在许多临床和生物医学研究中。GWAS和整合分析是鉴定常见和复杂疾病易感基因的重要方法。临床和遗传研究的最终目标是了解风险因素和表型之间的关系,以开发预防,诊断和治疗疾病的新方法。该项目旨在将新的统计方法转化为分析高维临床和基因组数据的新方法,这些数据对实现这一目标至关重要。从拟议的项目的方法和结果将被纳入研究生课程高维数据分析。研究人员将向科学期刊提交论文,并在互联网上公开发表论文和计算机程序,从而向科学界广泛传播研究结果。研究人员还将在科学会议和讲习班上介绍研究结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Huang其他文献
Regularized biomarker selection in microarray meta-analysis
微阵列荟萃分析中的常规生物标志物选择
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Shuangge Ma;Jian Huang - 通讯作者:
Jian Huang
Study on isolating Matsutake mycorrhizas-associated actinobacteria and evaluating their impacts on fungal growth
松茸菌根相关放线菌的分离及其对真菌生长影响的研究
- DOI:
10.11519/jfsc.128.0_505 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
C. Lian;Yan Xia;Jian Huang;Hiroyuki Kurokuchi;N. Matsushita;Y. Ota;P. Pawara;Shijie Zhang;Lu - 通讯作者:
Lu
Design of multichannel QMF banks via frequency-domain optimizations
通过频域优化设计多通道 QMF 组
- DOI:
10.1109/82.769808 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Jian Huang;G. Gu;B. Shenoi - 通讯作者:
B. Shenoi
A Case Probe into Emotional Experiences of Chinese English Majors in L2 Listening Learning Process: A Positive Psychology Perspective
中国英语专业学生二语听力学习过程中情绪体验的个案探讨:积极心理学视角
- DOI:
10.1177/21582440221079815 - 发表时间:
2022 - 期刊:
- 影响因子:2
- 作者:
Jian Huang - 通讯作者:
Jian Huang
The Fate of Ultrafine Particle Matters in Air and Their Detection Techniques
空气中超细颗粒物质的归宿及其检测技术
- DOI:
10.12783/dteees/gmee2018/27499 - 发表时间:
2019-01 - 期刊:
- 影响因子:0
- 作者:
Dan-Xue Liao;Huimei Shan;San-Xi Peng;Luo Linbo;Wang Shaopei;Chao-Ran Zhao;Pan Aoran;Jian Huang;Hui Chen - 通讯作者:
Hui Chen
Jian Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Huang', 18)}}的其他基金
Collaborative Research: Elements: Towards A Scalable Infrastructure for Archival and Reproducible Scientific Visualizations
协作研究:要素:建立用于存档和可重复科学可视化的可扩展基础设施
- 批准号:
2209767 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
CAREER: Towards Learning-Based Storage Systems with Hardware-Software Co-Design
职业:通过软硬件协同设计实现基于学习的存储系统
- 批准号:
2144796 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
EAGER: CRYO: Continuous Adiabatic Demagnetization Refrigeration Below 1K without Helium-3
EAGER:CRYO:连续绝热退磁制冷低于 1K,无需 Helium-3
- 批准号:
2232489 - 财政年份:2022
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Collaborative Research: Integrating multi-dimensional omics data for quantifying disease heterogeneity
协作研究:整合多维组学数据以量化疾病异质性
- 批准号:
1916199 - 财政年份:2019
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scaling the Software-Defined Data Center with Network-Storage Stack Co-Design
SPX:协作研究:通过网络存储堆栈协同设计扩展软件定义的数据中心
- 批准号:
1919044 - 财政年份:2019
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
CRII: CSR: System Techniques to Exploit the Byte-Accessibility of Solid-State Drives
CRII:CSR:利用固态硬盘字节可访问性的系统技术
- 批准号:
1850317 - 财政年份:2019
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
- 批准号:
1629890 - 财政年份:2016
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Quantum electron solids and interaction-driven phenomena in two- and one-dimensional systems
二维和一维系统中的量子电子固体和相互作用驱动的现象
- 批准号:
1410302 - 财政年份:2014
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Undergraduate Training at NSF Teragrid XD RDAV Center
NSF Teragrid XD RDAV 中心的本科生培训
- 批准号:
1136246 - 财政年份:2011
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Electron-Electron Interaction Driven Phase Transition in Low Dimensional Systems
低维系统中电子-电子相互作用驱动的相变
- 批准号:
1105183 - 财政年份:2011
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
相似国自然基金
分泌蛋白IGFBP2在儿童Group3/Group4型髓母细胞瘤恶性进展中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大兴安岭火山湖Group I长链烯酮冷季节温标研究与过去2000年温度定量重建
- 批准号:42073070
- 批准年份:2020
- 资助金额:61 万元
- 项目类别:面上项目
近海沉积物中Marine Group I古菌新类群的发现、培养及其驱动碳氮循环的机制
- 批准号:92051115
- 批准年份:2020
- 资助金额:81.0 万元
- 项目类别:重大研究计划
MicroRNA靶向的漆酶基因及其所在Group 1 亚家族成员 调控水稻产量性状的功能机制
- 批准号:
- 批准年份:2019
- 资助金额:257 万元
- 项目类别:
超级增强子驱动的核心转录调控环路在Group_3亚型髓母细胞瘤的发病和治疗中的作用和机制
- 批准号:81972646
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
东北地区火山湖GroupⅠ类型的长链烯酮研究及其不饱和度温标的应用
- 批准号:41702187
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
中国源毕氏肠微孢子虫group 2基因型人兽共患特征的研究
- 批准号:31502055
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
人源Group IIE分泌型磷脂酶A2蛋白的结构生物学研究
- 批准号:31300670
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
原核生物基因内含子-group II intron 的研究
- 批准号:30770463
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107345 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107344 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107347 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2107346 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
- 批准号:
2210823 - 财政年份:2021
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
The carryover hypothesis of cooperative behaviour in cultural group selection theory
文化群体选择理论中合作行为的遗留假设
- 批准号:
20K03323 - 财政年份:2020
- 资助金额:
$ 15.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Group selection as a novel tool to screen and improve biological pesticides
群体选择作为筛选和改进生物农药的新工具
- 批准号:
BB/S003428/1 - 财政年份:2019
- 资助金额:
$ 15.97万 - 项目类别:
Research Grant
Cultural group selection and the evolution of social norms: Empirical investigations using macro data analyses and large-scale group experiments.
文化群体选择和社会规范的演变:利用宏观数据分析和大规模群体实验进行的实证研究。
- 批准号:
17KK0060 - 财政年份:2018
- 资助金额:
$ 15.97万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
State-of-the-art workshop: Methods for placebo comparator group selection and use in surgical trials
最先进的研讨会:手术试验中安慰剂对照组选择和使用的方法
- 批准号:
MC_PC_17155 - 财政年份:2018
- 资助金额:
$ 15.97万 - 项目类别:
Intramural
Addressing Individual Provider Bias and Group Decision-Making in Selection of Advanced Heart Failure Therapies in Racial/Ethnic Minorities
解决少数种族/族裔高级心力衰竭治疗选择中的个体提供者偏见和群体决策
- 批准号:
9755243 - 财政年份:2018
- 资助金额:
$ 15.97万 - 项目类别: