A Machine Learning Framework for Acceleration of Materials Prediction
用于加速材料预测的机器学习框架
基本信息
- 批准号:1410514
- 负责人:
- 金额:$ 37.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYComputational research has been playing an increasingly important role in the development of new materials. The central aim of this project is to create a theoretical framework and computational tools capable of speeding up the prediction of new synthesizable materials by orders of magnitude. The efficiency and the reliability of the method will be achieved by combining two bio-inspired algorithms. A learning "neural network" scheme will be implemented in the "Module for Ab Initio Structure Evolution" package which presently has the capability to perform global structure optimization with an evolutionary algorithm. The introduced computational approach will be applicable to a broad range of material classes and expected to accelerate the exploration of complex systems. A particular focus will be placed on the development of metal oxide catalysts and metal-based battery electrodes for energy-related applications.Artificial neural networks are a powerful tool used in many research areas for dealing with classification, control, and interpolation problems in multi-dimensional spaces. The application of the method to solid state problems requires a formalism specifically designed for building and training neural networks to map the potential energy profiles of given atomic configurations. Namely, an automated algorithm should be able to parse an arbitrary atomic configuration into a suitable set of input parameters, train the neural network on a relevant dataset, and monitor the ability to produce accurate total energy and atomic forces during simulations. The PI's preliminary work and the recent research in the field have shown that, compared to widely used quantum mechanical and classical models, neural networks have the potential to provide a good balance between accuracy and efficiency.The project will include multiple educational activities to foster high-school and undergraduate students' interest in science and mathematics. Students will have the opportunity to learn about computational methods and take part in the research under PI's supervision. A part of the outreach work will be done through Binghamton University's Evolutionary Studies program which brings together students and researchers from biological, physics, and computer sciences.TECHNICAL SUMMARYThis award supports computational and theoretical research and education directed at advancing analytical and computational techniques for materials discovery. Computational input can be particularly valuable at the initial stages of materials development providing libraries of synthesizable candidates and possible synthesis conditions. The success of determining new stable materials depends on the careful global optimization of crystal structures and the accurate evaluation of their thermodynamic stability. Traditionally, the two challenges have been addressed separately. This project will combine a neural network method with an evolutionary algorithm to automate and accelerate compound prediction. The neural network formalism will be generalized to describe a wide range of interatomic interactions with near ab initio accuracy while scaling linearly with the system size. Preliminary tests have shown the ability of such models to capture subtle many-body effects. The developed computational approach is expected to accelerate the exploration of systems known to exhibit particularly complex structures, such as metal oxide catalysts or metal-based battery electrodes. Neural network models will be trained, in particular, on already generated databases containing thousands of entries. Analysis of the constructed neutral-network-based interpolators will advance the fundamental understanding of the bonding mechanisms for future rational materials design. The compound prediction tool offering a combination of two bio-inspired algorithms will be released as an open-source code. One of the objectives is to create a shared online resource with full access to all built interatomic models and all ab initio data used for training the neural networks. Such a platform will ensure reuse of generated density functional theory data and reduce the redundancy of expensive ab initio calculations. Validation of the developed predictive approach will be carried out in close collaborations with Chemistry and Engineering experimental groups at Binghamton University. The project will also include multiple educational activities to foster high-school and undergraduate students' interest in science and mathematics. Students will have the opportunity to learn about computational methods and take part in the research under PI's supervision. A part of the outreach work will be done through Binghamton University's Evolutionary Studies program which brings together students and researchers from biological, physics, and computer sciences.
非技术总结计算研究在新材料的开发中发挥着越来越重要的作用。该项目的中心目标是创建一个理论框架和计算工具,能够加速预测新的可合成材料的数量级。通过结合两种生物启发算法,实现了该方法的高效性和可靠性。将在“Ab Initio结构进化模块”软件包中实施学习“神经网络”方案,该软件包目前具有使用进化算法进行全局结构优化的能力。引入的计算方法将适用于广泛的材料类别,并有望加速复杂系统的探索。一个特别的重点将放在开发金属氧化物催化剂和金属基电池电极的能源相关的应用。人工神经网络是一个强大的工具,用于处理分类,控制和插值问题,在许多研究领域的多维空间。固态问题的方法的应用需要一个专门设计的形式主义,用于建立和训练神经网络映射给定的原子配置的势能分布。也就是说,自动化算法应该能够将任意原子配置解析为一组合适的输入参数,在相关数据集上训练神经网络,并在模拟过程中监控产生准确总能量和原子力的能力。PI的前期工作和最近在该领域的研究表明,与广泛使用的量子力学和经典模型相比,神经网络具有在准确性和效率之间取得良好平衡的潜力。该项目将包括多种教育活动,以培养高中和本科生对科学和数学的兴趣。学生将有机会学习计算方法,并在PI的监督下参与研究。一部分推广工作将通过宾厄姆顿大学的进化研究计划来完成,该计划汇集了来自生物学,物理学和计算机科学的学生和研究人员。技术总结该奖项支持旨在推进材料发现的分析和计算技术的计算和理论研究和教育。计算输入在材料开发的初始阶段可能特别有价值,提供可合成候选物和可能的合成条件的库。确定新的稳定材料的成功取决于晶体结构的仔细的全局优化和对其热力学稳定性的准确评估。传统上,这两个挑战是分开处理的。本计画将联合收割机结合神经网路方法与演化演算法来自动化及加速化合物预测。神经网络的形式主义将被推广到描述广泛的原子间的相互作用与近从头算的精度,同时线性缩放与系统的大小。初步测试表明,这种模型能够捕捉到微妙的多体效应。预计开发的计算方法将加速对已知具有特别复杂结构的系统的探索,例如金属氧化物催化剂或金属基电池电极。神经网络模型将在已经生成的包含数千个条目的数据库中进行训练。 对所构造的基于神经网络的插值器的分析将为未来合理的材料设计提供对键合机理的基本理解。提供两种生物启发算法组合的化合物预测工具将作为开源代码发布。目标之一是创建一个共享的在线资源,可以完全访问所有构建的原子间模型和用于训练神经网络的所有从头算数据。这样的平台将确保生成的密度泛函理论数据的重复使用,并减少昂贵的从头计算的冗余。开发的预测方法的验证将与宾厄姆顿大学的化学和工程实验组密切合作进行。 该项目还将包括多种教育活动,以培养高中和本科生对科学和数学的兴趣。学生将有机会学习计算方法,并在PI的监督下参与研究。一部分推广工作将通过宾厄姆顿大学的进化研究计划完成,该计划汇集了来自生物学、物理学和计算机科学的学生和研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Kolmogorov其他文献
Alexey Kolmogorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey Kolmogorov', 18)}}的其他基金
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320073 - 财政年份:2023
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Theory-Guided Discovery of Tin-Based Materials
锡基材料的理论引导发现
- 批准号:
1821815 - 财政年份:2018
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:
2347035 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
An Explanatory Machine Learning Framework for Teacher Effectiveness in STEM Education
STEM 教育中教师效能的解释性机器学习框架
- 批准号:
2321191 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
- 批准号:
2341055 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Continuing Grant
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Machine Learning Framework for Concrete Workability Estimation
用于混凝土和易性评估的机器学习框架
- 批准号:
LP220100390 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Linkage Projects
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
- 批准号:
EP/X027732/1 - 财政年份:2024
- 资助金额:
$ 37.2万 - 项目类别:
Research Grant
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
- 批准号:
10059716 - 财政年份:2023
- 资助金额:
$ 37.2万 - 项目类别:
Launchpad
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
- 批准号:
2308574 - 财政年份:2023
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 37.2万 - 项目类别:
Standard Grant