Situating Big Data: Assessing Game-Based STEM Learning in Context
定位大数据:评估基于游戏的 STEM 学习情境
基本信息
- 批准号:1418352
- 负责人:
- 金额:$ 77.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This REAL project arises from the 2013 solicitation on Data-intensive Research to Improve Teaching and Learning. The intention of that effort is to bring together researchers from across disciplines to foster novel, transformative, multidisciplinary approaches to using the data in large education-related data sets to create actionable knowledge for improving STEM teaching and learning environments in the medium term and to revolutionize learning in the longer term. The project team aims to understand how to use data collected from the environment in which learning technologies are used to do the following: (1) allow automated assessment that takes the full range of classroom activities and discussions around use of the technology into account in providing customized feedback recommendations; (2) come to better understand how learning and the context in which it is happening interact; and, (3) provide theory-informed and evidence-based advice for refining learning approaches and activities. This will make it easier for teachers to manage ongoing assessment and to adapt classroom activities to learners' needs in learner-centered, project-based, and inquiry-driven learning environments. Results of this project will lay the foundations for making assessment regular, routine and ongoing and to take a fuller range of learning activities into account. This, in turn, will allow better personalization and ongoing feedback and scaffolding for learners. Results will enhance understanding of how to assess and foster not only disciplinary learning, but also disposition, identity development, and long-term participation.The PIs seek to integrate theories of situated cognition with analysis of big data. They will explore how to integrate clickstream data from technology with key forms of multimodal data describing the contexts in which the technology is being used, e.g., individual and group discourse (online and in-room), individual and curricular artifacts, classroom assessments, and school performance, to generate a data-driven methodology for: (1) understanding the learning happening in technology-rich learning environments; (2) assessing development and needs of individuals within those environments in ways that will suggest adaptations and scaffolding; and (3) investigating situated cognition. They aim to make it easier to manage ongoing assessment and to adapt classroom activities to learners' needs in learner-centered, project-based, and inquiry-driven learning environments. They will investigate how to (1) enable consideration of the full ecosystem of learning and data collected across it when assessing learning and engagement, and (2) identify what is working and not working to foster learning in a situation. They will demonstrate where and how useful data are situated in the learning ecology when learners are engaged in hands-on and discourse-rich learning activities, and how to use these data to assess effectiveness and impact of interventions. Their plan involves matching important patterns in hand-coded qualitative data to patterns of automatically collected data; this will allow them to identify the patterns in automated data collection that can be used as indicators of factors such as understanding, confusion, learning, and participation.
这个真正的项目源于2013年关于改善教与学的数据密集型研究的征集。这一努力的目的是将来自不同学科的研究人员聚集在一起,促进使用与教育相关的大型数据集中的数据的新的、变革性的、多学科的方法,以创造可操作的知识,以便在中期改善STEM教学和学习环境,并在较长期内彻底改变学习。项目组的目标是了解如何使用从使用学习技术的环境中收集的数据来做以下工作:(1)允许进行自动化评估,在提供定制反馈建议时考虑到所有课堂活动和围绕技术使用的讨论;(2)更好地了解学习和学习发生的背景是如何相互作用的;以及(3)为改进学习方法和活动提供基于理论和证据的建议。这将使教师更容易管理正在进行的评估,并使课堂活动在以学习者为中心、基于项目和探究驱动的学习环境中适应学习者的需求。该项目的结果将为使评估常态化、常规化和持续进行以及更全面地考虑学习活动奠定基础。反过来,这将为学习者提供更好的个性化以及持续的反馈和支撑。结果将增强对如何评估和培养不仅是学科学习,而且还包括性格、认同发展和长期参与的理解。PIS寻求将情境认知理论与大数据分析相结合。他们将探索如何将来自技术的点击流数据与描述技术使用环境的关键形式的多模式数据相结合,例如个人和群体话语(在线和室内)、个人和课程人工制品、课堂评估和学校表现,以生成数据驱动的方法,以:(1)了解在技术丰富的学习环境中发生的学习;(2)以建议适应和支架的方式评估个人在这些环境中的发展和需求;以及(3)调查情境认知。它们旨在更容易地管理正在进行的评估,并使课堂活动在以学习者为中心、基于项目和探究驱动的学习环境中适应学习者的需求。他们将研究如何(1)在评估学习和参与度时,能够考虑整个学习生态系统和通过它收集的数据,以及(2)确定在某种情况下什么是有效的,什么是不有效的,以促进学习。他们将展示当学习者参与实践和语篇丰富的学习活动时,学习生态中的有用数据位于哪里以及如何定位,以及如何使用这些数据来评估干预措施的有效性和影响。他们的计划包括将手工编码的定性数据中的重要模式与自动收集的数据模式进行匹配;这将使他们能够识别自动数据收集中的模式,这些模式可以用作理解、困惑、学习和参与等因素的指示器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Berland其他文献
Matthew Berland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Berland', 18)}}的其他基金
Applying Game Design Principles for Supporting Computational Literacy Experiences in Museum Exhibits
应用游戏设计原则支持博物馆展览中的计算素养体验
- 批准号:
1713439 - 财政年份:2017
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
CAP: Data Consortium Fellows: A Mentorship Program to Expand the Cyberlearning Data Analytics Community
CAP:数据联盟研究员:扩大网络学习数据分析社区的指导计划
- 批准号:
1549112 - 财政年份:2016
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: CS-NYCE: An Ecological Approach to Understanding the Rollout of Student-Centered Computer Science Education in New York City
合作研究:RAPID:CS-NYCE:一种理解纽约市以学生为中心的计算机科学教育的生态方法
- 批准号:
1645707 - 财政年份:2016
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
Collaborative Research: REE: Makescape - A Constructionist Museum Installation to Advance Engineering Literacy
合作研究:REE:Makescape——一个促进工程素养的建构主义博物馆装置
- 批准号:
1263814 - 财政年份:2013
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
Collaborative Research: Programming Standing Up
协作研究:站立编程
- 批准号:
1331655 - 财政年份:2013
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
BCC-EHR: Learning Games Playdata Consortium (PDC): A Consortium for Digital Analytics and Techniques for Assessment with Learning Games
BCC-EHR:学习游戏 Playdata 联盟 (PDC):学习游戏数字分析和评估技术联盟
- 批准号:
1338508 - 财政年份:2013
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
Collaborative Research: Programming Standing Up
协作研究:站立编程
- 批准号:
1025223 - 财政年份:2010
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
ARF鸟苷酸交换因子BIG1介导ACSL4依赖性铁死亡在非酒精性脂肪性肝炎中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Big Code深度背景增强的Android应用代码反混淆研究
- 批准号:61972290
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
BIG1介导STING囊泡转运在抗肺癌免疫反应中的作用及分子机制
- 批准号:81903639
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
水稻Big Grain3 通过调控细胞分裂素转运调节籽粒大小
- 批准号:2019JJ50243
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
ARF鸟苷酸交换因子BIG1调控巨噬细胞重编程在脓毒症免疫抑制形成中的作用及机制研究
- 批准号:81971488
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
控制豆科作物器官大小关键基因BIG SEEDS1的功能与应用研究
- 批准号:31771345
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
生长素转运调控基因BIG介导高浓度CO2下气孔关闭的分子机制
- 批准号:31171356
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
ARF鸟苷酸交换因子BIG1定向调控ABCA1功能的分子机制
- 批准号:81173056
- 批准年份:2011
- 资助金额:69.0 万元
- 项目类别:面上项目
BIG2介导的GABAA型受体转运模式及信号调控机制
- 批准号:31070924
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Research Grant
Big mobile phone GPS data driven pseudo individual life-pattern generation
大手机GPS数据驱动伪个体生活模式生成
- 批准号:
24K17367 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 77.8万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 77.8万 - 项目类别:
EU-Funded