Numerical methods for non-Newtonian fluid structure interaction problems
非牛顿流体结构相互作用问题的数值方法
基本信息
- 批准号:1418960
- 负责人:
- 金额:$ 20.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is focused on the stable and efficient numerical approximation of equations describing the flow of a non-Newtonian fluid interacting with an elastic structure. Such fluid flows are ubiquitous in our everyday lives, from the flow of blood in our bodies to flow in industrial processes such as pharmaceutical blending and microfluidics. This theoretical investigation will provide a solid foundation for the further development of numerical algorithms for such systems. The research project will also broaden the mathematical basis for the numerical simulation of non-Newtonian fluid flow in physically realistic settings. The goal of this research project is the development and analysis of stable and efficient numerical schemes for non-Newtonian fluid structure interactions. There has been significant mathematical research for Newtonian fluid flow problems, but to date few investigations of non-Newtonian flows. The systems studied in this project involve coupled domains representing multi-physics behavior. This increases the numerical complexity as both stress and velocity must be resolved in the domains, and the strong interaction between the governing equations requires solution algorithms that achieve optimal convergence rates for efficiency while splitting the operators. Because of the large number of unknowns required to compute an accurate approximation of non-Newtonian (in particular viscoelastic) fluids, there is a need to develop efficient solvers for these problems. This research will contribute to the development and rigorous analysis of stability and accuracy properties of numerical methods for non-Newtonian fluid structure interactions.
该研究项目的重点是描述非牛顿流体与弹性结构相互作用的流动方程的稳定且有效的数值近似。这种流体流动在我们的日常生活中无处不在,从我们体内的血液流动到药物混合和微流体等工业过程中的流动。这项理论研究将为此类系统的数值算法的进一步开发提供坚实的基础。该研究项目还将拓宽物理现实环境中非牛顿流体流动数值模拟的数学基础。该研究项目的目标是开发和分析非牛顿流体结构相互作用的稳定有效的数值方案。对牛顿流体流动问题进行了大量的数学研究,但迄今为止对非牛顿流动的研究很少。该项目研究的系统涉及代表多物理行为的耦合域。这增加了数值复杂性,因为应力和速度都必须在域中求解,并且控制方程之间的强相互作用需要求解算法在拆分算子的同时实现效率的最佳收敛速度。由于计算非牛顿(特别是粘弹性)流体的精确近似值需要大量未知数,因此需要为这些问题开发有效的求解器。这项研究将有助于非牛顿流体结构相互作用数值方法的稳定性和准确性特性的开发和严格分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyesuk Lee其他文献
Domain decomposition with local time discretization for the nonlinear Stokes–Biot system
- DOI:
10.1016/j.cam.2024.116311 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:
- 作者:
Hemanta Kunwar;Hyesuk Lee - 通讯作者:
Hyesuk Lee
A Lagrange multiplier method for fluid-structure interaction: Well-posedness and domain decomposition
用于流体-结构相互作用的拉格朗日乘子法:适定性与区域分解
- DOI:
10.1016/j.camwa.2024.12.020 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Amy de Castro;Hyesuk Lee;Margaret M. Wiecek - 通讯作者:
Margaret M. Wiecek
Approximation of viscoelastic flows with defective boundary conditions
- DOI:
10.1016/j.jnnfm.2011.12.002 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
Keith J. Galvin;Hyesuk Lee;Leo G. Rebholz - 通讯作者:
Leo G. Rebholz
Analysis and finite element approximation of an optimal control problem for the Oseen viscoelastic fluid flow
- DOI:
10.1016/j.jmaa.2007.03.048 - 发表时间:
2007-12-15 - 期刊:
- 影响因子:
- 作者:
Hyung-Chun Lee;Hyesuk Lee - 通讯作者:
Hyesuk Lee
Numerical Simulations of Viscoelastic Fluid Flows Past a Transverse Slot Using Least-Squares Finite Element Methods
使用最小二乘有限元方法对流过横向槽的粘弹性流体进行数值模拟
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.5
- 作者:
Hsueh;Hyesuk Lee - 通讯作者:
Hyesuk Lee
Hyesuk Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyesuk Lee', 18)}}的其他基金
Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
- 批准号:
2207971 - 财政年份:2022
- 资助金额:
$ 20.62万 - 项目类别:
Standard Grant
Algorithm Development and Analysis for Non-Newtonian Fluids Interacting with Elastic and Poroelastic Structures
非牛顿流体与弹性和多孔弹性结构相互作用的算法开发和分析
- 批准号:
1818842 - 财政年份:2018
- 资助金额:
$ 20.62万 - 项目类别:
Standard Grant
Numerical Approximations of Non-Newtonian Fluid Flows with Applications
非牛顿流体流动的数值近似及其应用
- 批准号:
1016182 - 财政年份:2010
- 资助金额:
$ 20.62万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
- 批准号:
356075-2013 - 财政年份:2017
- 资助金额:
$ 20.62万 - 项目类别:
Discovery Grants Program - Individual
Numerical study of non-equilibrium systems by tensor network methods
张量网络方法对非平衡系统的数值研究
- 批准号:
17K05576 - 财政年份:2017
- 资助金额:
$ 20.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-local Kinetic Collisional Transport: Analysis and Numerical Methods
非局部动力学碰撞传输:分析和数值方法
- 批准号:
1715515 - 财政年份:2017
- 资助金额:
$ 20.62万 - 项目类别:
Standard Grant
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
- 批准号:
356075-2013 - 财政年份:2016
- 资助金额:
$ 20.62万 - 项目类别:
Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
- 批准号:
356075-2013 - 财政年份:2015
- 资助金额:
$ 20.62万 - 项目类别:
Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
- 批准号:
356075-2013 - 财政年份:2014
- 资助金额:
$ 20.62万 - 项目类别:
Discovery Grants Program - Individual
Mathematical models, methods and numerical approximations for quantum non-relativistic and relativistic mechanics and electrodynamics with application to nonlinear optics
量子非相对论和相对论力学和电动力学的数学模型、方法和数值近似及其在非线性光学中的应用
- 批准号:
356075-2013 - 财政年份:2013
- 资助金额:
$ 20.62万 - 项目类别:
Discovery Grants Program - Individual
Conference support: XVIth International Workshop on Numerical Methods for Non-Newtonian Flows, Northampton, MA
会议支持:第十六届非牛顿流数值方法国际研讨会,马萨诸塞州北安普顿
- 批准号:
1018988 - 财政年份:2010
- 资助金额:
$ 20.62万 - 项目类别:
Standard Grant
Non-iterative Numerical Methods for Boundary Value Problems
边值问题的非迭代数值方法
- 批准号:
0514487 - 财政年份:2005
- 资助金额:
$ 20.62万 - 项目类别:
Continuing Grant
Numerical Verification Methods for Dynamical Systems described by ODEs
常微分方程描述的动力系统数值验证方法
- 批准号:
17540106 - 财政年份:2005
- 资助金额:
$ 20.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




