Algorithm Development and Analysis for Non-Newtonian Fluids Interacting with Elastic and Poroelastic Structures

非牛顿流体与弹性和多孔弹性结构相互作用的算法开发和分析

基本信息

  • 批准号:
    1818842
  • 负责人:
  • 金额:
    $ 23.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This research concerns the development and rigorous analysis of stable and efficient numerical schemes for non-Newtonian fluid - structure interactions (FSI). The study will be focused on partitioning schemes of an implicit type for the coupled model systems that allow each subproblem to be solved independently using existing local solvers in a fixed/moving domain setting. Stability and accuracy properties of numerical methods will be investigated using non-Newtonian fluid and poroelastic/elastic structure models. The theoretical investigation will provide a solid foundation and guidance to the further development of numerical algorithms. Because of the many important biological and engineering processes involving non-Newtonian fluid flows, there is a great demand for mathematical support in these applications. This research will provide an underlying mathematical foundation for non-Newtonian flows in a multiphysical setting. The technical goal of this project is to develop algorithms and analyze numerical schemes for two coupled systems: (a) quasi-Newtoinan fluid - poroelastic structure and (b) viscoelastic fluid - elastic structure. For system (a) the PI will focus on the development and analysis of a nonlinear operator, where a solution to the operator equation yields subsystem solutions satisfying interface conditions of the whole coupled system. Advantages of this approach over the previously developed optimization approach are the flexibility to choose a nonlinear solver and that no extra coding effort is needed as the adjoint system is no longer involved in a solution process. Since it is expected that the linearized operator is not self-adjoint, the linear operator equation should be solved by an iterative solver for a non-self-adjoint problem. When a partitioned scheme is considered for simulating viscoelastic FSI, extra difficulty is encountered due to the lack of information on the stress along the moving boundary and movement of inlet and outlet boundaries along the interface of two subsystems. The PI will investigate various choices for a stress boundary value and their effect on a solution of FSI. Another issue with the viscoelastic FSI is the size of the fluid problem to be solved in each time step (or in each internal iteration), which may require an operator splitting based on a temporal discretization scheme such as a fractional time step method. To tackle this, the PI will investigate various time stepping schemes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究致力于发展和严格分析非牛顿流体-结构相互作用(FSI)的稳定有效的数值格式。这项研究将集中于耦合模型系统的隐式类型的划分方案,该方案允许在固定/移动的区域设置中使用现有的局部求解器独立地解决每个子问题。数值方法的稳定性和精度将使用非牛顿流体和孔弹性/弹性结构模型进行研究。理论研究将为数值算法的进一步发展提供坚实的基础和指导。由于许多重要的生物和工程过程涉及非牛顿流体流动,在这些应用中对数学支持有很大的需求。这项研究将为多物理环境下的非牛顿流动提供一个基本的数学基础。这个项目的技术目标是开发算法和分析两个耦合系统的数值格式:(A)准Newtoinan流体-孔弹性结构和(B)粘弹性流体-弹性结构。对于系统(A),PI将集中于非线性算子的开发和分析,其中算子方程的解产生满足整个耦合系统的界面条件的子系统解。与以前开发的最优化方法相比,这种方法的优点是可以灵活地选择非线性求解器,并且不需要额外的编码工作,因为伴随系统不再参与求解过程。由于期望线性化的算子不是自伴的,线性算子方程应该用迭代求解器来求解非自伴问题。当考虑分区格式来模拟粘弹性FSI时,由于缺乏关于沿移动边界的应力以及进出口边界沿两个子系统界面的移动的信息,因此会遇到额外的困难。PI将调查应力边界值的各种选择及其对FSI解的影响。粘弹性FSI的另一个问题是在每个时间步(或在每个内部迭代中)要解决的流体问题的大小,这可能需要基于时间离散化方案(如分数时间步长方法)的算子分裂。为了解决这个问题,PI将调查各种时间推进计划。这一裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonconforming time discretization based on Robin transmission conditions for the Stokes-Darcy system
  • DOI:
    10.1016/j.amc.2021.126602
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thi-Thao-Phuong Hoang;Hemanta Kunwar;H. Lee
  • 通讯作者:
    Thi-Thao-Phuong Hoang;Hemanta Kunwar;H. Lee
A Global-in-time Domain Decomposition Method for the Coupled Nonlinear Stokes and Darcy Flows
  • DOI:
    10.1007/s10915-021-01422-1
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Thi-Thao-Phuong Hoang;H. Lee
  • 通讯作者:
    Thi-Thao-Phuong Hoang;H. Lee
An adaptive least-squares finite element method for Giesekus viscoelastic flow problems
Second‐order time discretization for a coupled quasi‐Newtonian fluid‐poroelastic system
耦合准牛顿流体多孔弹性系统的二阶时间离散
A Weighted Least-Squares Finite Element Method for Biot’s Consolidation Problem
Biot 固结问题的加权最小二乘有限元方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hyesuk Lee其他文献

Domain decomposition with local time discretization for the nonlinear Stokes–Biot system
  • DOI:
    10.1016/j.cam.2024.116311
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hemanta Kunwar;Hyesuk Lee
  • 通讯作者:
    Hyesuk Lee
A Lagrange multiplier method for fluid-structure interaction: Well-posedness and domain decomposition
用于流体-结构相互作用的拉格朗日乘子法:适定性与区域分解
  • DOI:
    10.1016/j.camwa.2024.12.020
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Amy de Castro;Hyesuk Lee;Margaret M. Wiecek
  • 通讯作者:
    Margaret M. Wiecek
Approximation of viscoelastic flows with defective boundary conditions
  • DOI:
    10.1016/j.jnnfm.2011.12.002
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith J. Galvin;Hyesuk Lee;Leo G. Rebholz
  • 通讯作者:
    Leo G. Rebholz
Analysis and finite element approximation of an optimal control problem for the Oseen viscoelastic fluid flow
  • DOI:
    10.1016/j.jmaa.2007.03.048
  • 发表时间:
    2007-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hyung-Chun Lee;Hyesuk Lee
  • 通讯作者:
    Hyesuk Lee
Numerical Simulations of Viscoelastic Fluid Flows Past a Transverse Slot Using Least-Squares Finite Element Methods
使用最小二乘有限元方法对流过横向槽的粘弹性流体进行数值模拟

Hyesuk Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hyesuk Lee', 18)}}的其他基金

Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
  • 批准号:
    2207971
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Standard Grant
Numerical methods for non-Newtonian fluid structure interaction problems
非牛顿流体结构相互作用问题的数值方法
  • 批准号:
    1418960
  • 财政年份:
    2014
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Standard Grant
Numerical Approximations of Non-Newtonian Fluid Flows with Applications
非牛顿流体流动的数值近似及其应用
  • 批准号:
    1016182
  • 财政年份:
    2010
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of "ultra" large displacement dynamic analysis algorithm using machine learning
利用机器学习开发“超”大位移动态分析算法
  • 批准号:
    23K04007
  • 财政年份:
    2023
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Intracranial EEG Analysis Algorithm to Improve Surgical Outcomes in Drug-Resistant Epilepsy
开发颅内脑电图分析算法以改善耐药性癫痫的手术结果
  • 批准号:
    22K09296
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of treatment algorithm using musculoskeletal model analysis and AI technology in knee joint osteoarthritis
利用肌肉骨骼模型分析和人工智能技术开发膝关节骨关节炎治疗算法
  • 批准号:
    22K21258
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Algorithm development and cost-effectiveness analysis to optimize comprehensive environmental support for older adults
算法开发和成本效益分析,以优化老年人的综合环境支持
  • 批准号:
    22K10391
  • 财政年份:
    2022
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A biopsychosocial functioning library based on user needs analysis algorithm for efficient development of assistive technologies
基于用户需求分析算法的生物心理社会功能库,用于辅助技术的高效开发
  • 批准号:
    21H03859
  • 财政年份:
    2021
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Bioinformatic algorithm and infrastructure development for post-translational modification analysis
职业:翻译后修饰分析的生物信息学算法和基础设施开发
  • 批准号:
    2046122
  • 财政年份:
    2021
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Continuing Grant
Data Analysis and Algorithm Development to Optimize Energy Storage Installation Size
数据分析和算法开发以优化储能安装规模
  • 批准号:
    560202-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Exploration of novel therapeutic targets for renal cancer by multi-omics analysis and development of treatment algorithm
通过多组学分析探索肾癌新治疗靶点并开发治疗算法
  • 批准号:
    19K09728
  • 财政年份:
    2019
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of an algorithm for determining the location of homologous recombination sites from NGS data and analysis of the relationship with genetic information
开发从NGS数据确定同源重组位点位置的算法并分析与遗传信息的关系
  • 批准号:
    19H03206
  • 财政年份:
    2019
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a diagnostic algorithm through gene panel testing and genetic risk score analysis to facilitate precision medicine for diabetes
通过基因组测试和遗传风险评分分析开发诊断算法,以促进糖尿病的精准医疗
  • 批准号:
    19K16534
  • 财政年份:
    2019
  • 资助金额:
    $ 23.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了