Complex Dynamics and Moduli Spaces
复杂动力学和模空间
基本信息
- 批准号:1422335
- 负责人:
- 金额:$ 10.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-31 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A major goal in dynamics is to understand moduli spaces. The most successful endeavor in this regard has been the study of the moduli space of quadratic polynomials, which contains the Mandelbrot Set, a fundamental object in the subject. One hopes to understand other moduli spaces to a similar extent, like the moduli space of rational maps of a given degree. Understanding the analytic and algebraic structure of these spaces is quite challenging; one reason is that few of the one-dimensional tools carry over to higher dimensions. The projects outlined in this proposal incorporate topology, algebraic geometry, complex analysis, Teichmueller theory, and the nondynamical moduli spaces of curves (and various compactifications thereof) to better understand complex dynamical systems (in one and several variables) and their associated dynamical moduli spaces from both analytic and algebraic points of view. The projects are organized into three main topics, and each topic is related in some way to Thurston's Topological Characterization of Rational Maps, a central theorem in the field of complex dynamics. The research program outlined in this proposal weaves Thurston's theorem into these research topics in a variety of different ways. Dynamical systems are all around us: the motion of the planets, the weather, the stock market, the ecosystems in which we live. These systems depend on a variety of parameters, and as these parameters change, the corresponding system is affected. Understanding how dynamical systems change with different parameters is a very complicated and delicate question which is not even completely understood in the simplest of mathematical models. The research outlined in this proposal forges new connections between different parameter spaces (or moduli spaces) associated to certain dynamical systems, which will be exploited to further understand the spaces in question. One dynamical system that arises across different scientific fields is Newton's Method, an essential tool for solving equations that is employed by scientists in every field. There are still many fundamental questions surrounding this dynamical system (in one and several variables) that have yet to be understood. Progress on the research outlined in the proposal has implications for this dynamical system in certain cases.
动力学的一个主要目标是理解模空间。在这方面最成功的奋进是研究二次多项式的模空间,其中包含曼德尔布罗特集,这是该主题的基本对象。人们希望在类似的程度上理解其他模空间,比如给定次数的有理映射的模空间。理解这些空间的解析和代数结构是相当具有挑战性的;一个原因是,很少有一维工具可以推广到更高的维度。本计划中概述的项目包括拓扑学,代数几何,复分析,Teichmueller理论和曲线的非动力学模空间(及其各种紧化),以更好地理解复杂的动力系统(一个或多个变量)及其相关的动力学模空间从分析和代数的角度来看。这些项目被组织成三个主要主题,每个主题都以某种方式与Thurston的理性映射的拓扑特征有关,这是复杂动力学领域的中心定理。在这个建议中概述的研究计划编织瑟斯顿定理到这些研究课题在各种不同的方式。动力系统就在我们周围:行星的运动、天气、股票市场、我们生活的生态系统。这些系统依赖于各种参数,并且当这些参数改变时,相应的系统受到影响。了解动力系统如何随不同参数变化是一个非常复杂和微妙的问题,即使在最简单的数学模型中也无法完全理解。该提案中概述的研究在与某些动力系统相关的不同参数空间(或模空间)之间建立了新的联系,这将被用来进一步理解所讨论的空间。一个在不同科学领域出现的动力学系统是牛顿方法,这是每个领域的科学家用来求解方程的重要工具。围绕这个动力系统(在一个或多个变量中)仍然有许多基本问题尚未被理解。提案中概述的研究进展在某些情况下对这一动力系统有影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Koch其他文献
Resilience characterized and quantified from physical activity data: A tutorial in R.
根据身体活动数据表征和量化的复原力:R 教程。
- DOI:
10.1016/j.psychsport.2022.102361 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
D. Baretta;Sarah Koch;Inés Cobo;G. Castaño‐Vinyals;R. de Cid;A. Carreras;J. Buekers;J. Garcia;J. Inauen;G. Chevance - 通讯作者:
G. Chevance
imaging of the airways in older ex-smokers Evidence for dysanapsis using computed tomographic
老年戒烟者的气道成像 使用计算机断层扫描提供呼吸不良的证据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Mcwilliams;S. Lam;H. Coxson;A. Sheel;J. Guenette;R. Yuan;Lukas Holy;J. Mayo;Sarah Koch;M. MacInnis;B. Sporer;J. Rupert;M. Koehle;Sabrina S. Wilkie;P. Dominelli;A. William - 通讯作者:
A. William
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß<sub>2</sub>-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction
- DOI:
10.1016/j.envint.2020.106182 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Sarah Koch;Joseph F. Welch;Raymond Tran;Andrew H. Ramsook;Andy Hung;Christopher Carlsten;Jordan A. Guenette;Michael S. Koehle - 通讯作者:
Michael S. Koehle
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction.
在一项实验室控制的柴油机尾气暴露研究中,对运动引起的支气管收缩的个体吸入短效 β2 激动剂后对恒定负荷运动的通气反应。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:11.8
- 作者:
Sarah Koch;Joseph F Welch;Raymond Tran;A. Ramsook;A. Hung;C. Carlsten;J. Guenette;M. Koehle - 通讯作者:
M. Koehle
Resistance of tele-service workers : implications for qualitative policy research
远程服务人员的抵制:对定性政策研究的影响
- DOI:
10.14288/1.0089443 - 发表时间:
2000 - 期刊:
- 影响因子:5.5
- 作者:
Sarah Koch - 通讯作者:
Sarah Koch
Sarah Koch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Koch', 18)}}的其他基金
Exploring the Topology and Geometry of Dynamical Subvarieties
探索动力学子类型的拓扑和几何
- 批准号:
2104649 - 财政年份:2021
- 资助金额:
$ 10.41万 - 项目类别:
Continuing Grant
Dynamical Developments: A Conference in Complex Dynamics and Teichmuller Theory
动力学发展:复杂动力学和泰希米勒理论会议
- 批准号:
1500750 - 财政年份:2015
- 资助金额:
$ 10.41万 - 项目类别:
Standard Grant
CAREER: Polynomials, Geometry, and Dynamics
职业:多项式、几何和动力学
- 批准号:
1452392 - 财政年份:2015
- 资助金额:
$ 10.41万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Standard Grant
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
- 批准号:
EP/X026612/1 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Research Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Standard Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 10.41万 - 项目类别:
Discovery Early Career Researcher Award
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2001486 - 财政年份:2020
- 资助金额:
$ 10.41万 - 项目类别:
Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2112697 - 财政年份:2020
- 资助金额:
$ 10.41万 - 项目类别:
Standard Grant
Combinatorial complexes for translation surfaces and dynamics on moduli space
平移表面和模空间动力学的组合复形
- 批准号:
19K14541 - 财政年份:2019
- 资助金额:
$ 10.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamics on homogeneous spaces and Moduli spaces
齐次空间和模空间上的动力学
- 批准号:
1724316 - 财政年份:2017
- 资助金额:
$ 10.41万 - 项目类别:
Continuing Grant