Dynamical Developments: A Conference in Complex Dynamics and Teichmuller Theory

动力学发展:复杂动力学和泰希米勒理论会议

基本信息

项目摘要

This award supports the participation of U.S.-based researchers in the international conference "Dynamical Developments: A Conference in Complex Dynamics and Teichmüller theory," taking place August 17-21, 2015, at Jacobs University in Bremen, Germany. Dynamical systems are all around us: the motion of the planets, the weather, the stock market, and the ecosystems in which we live. These systems depend on a variety of parameters, and as these parameters change, the corresponding system is affected. Often, "complexifying" a dynamical system and its corresponding parameter space, that is, regarding the salient quantities as complex numbers rather than (the more highly restricted) real numbers, leads to new insights and tools for investigating the underlying mathematics. Complex dynamics is a very active field that has experienced tremendous progress over the past few decades. This conference will bring together a diverse group of participants, ranging from various experts in these fields to younger researchers who are beginning their studies, for an intense and focused meeting to discuss exciting new developments, ideas, and directions for the subject.Complex dynamics has thrived over the past 25 years. This period of development has led to deep results on certain one-parameter model families (quadratic polynomials, for example). The time is ripe for the subject to advance to a more general theory, which will inevitably involve related fields such as Teichmüller theory, moduli spaces, dynamics in several complex variables, self-similar groups, arithmetic dynamics, symbolic dynamics, hyperbolic and algebraic geometry, and statistical physics. The conference will feature presentations by leading experts in complex dynamics and Teichmüller theory and will provide ample time for discussions. In addition to the formal scientific program, this conference will have two aspects less common to current mathematics conferences: there will be a young researchers seminar in which more junior participants can share their work with the community of mathematicians attending the conference, and there will be a computer program tutorial, showcasing some of the latest software used in the field. Conference web site : http://www-personal.umich.edu/~kochsc/H70.html
该奖项支持美国的参与-基于研究人员在国际会议“动态发展:在复杂动力学和Teichmüller理论会议”,发生在2015年8月17日至21日,在雅各布斯大学在不莱梅,德国。动力系统就在我们周围:行星的运动、天气、股票市场和我们生活的生态系统。这些系统依赖于各种参数,并且当这些参数改变时,相应的系统受到影响。通常,“复杂化”一个动力学系统及其相应的参数空间,也就是说,把显着的量看作复数,而不是(更严格限制的)真实的数,这会带来新的见解和工具来研究基础数学。复杂动力学是一个非常活跃的领域,在过去的几十年里取得了巨大的进展。本次会议将汇集来自不同领域的专家和刚开始研究的年轻研究人员,以一个紧张而有重点的会议来讨论该主题令人兴奋的新发展,想法和方向。复杂动力学在过去的25年中蓬勃发展。这一时期的发展导致了某些单参数模型族(例如二次多项式)的深入结果。时机已经成熟的主题推进到一个更普遍的理论,这将不可避免地涉及相关领域,如泰希米勒理论,模空间,动力学在几个复杂的变量,自相似群体,算术动力学,符号动力学,双曲和代数几何,统计物理。会议将由复杂动力学和Teichmüller理论的领先专家进行演讲,并将提供充足的讨论时间。 除了正式的科学计划,本次会议将有两个方面不太常见,目前的数学会议:将有一个年轻的研究人员研讨会,其中更多的初级参与者可以分享他们的工作与社会的数学家参加会议,将有一个计算机程序教程,展示一些最新的软件在该领域使用。会议网址:http://www-personal.umich.edu/~kochsc/H70.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Koch其他文献

Resilience characterized and quantified from physical activity data: A tutorial in R.
根据身体活动数据表征和量化的复原力:R 教程。
  • DOI:
    10.1016/j.psychsport.2022.102361
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    D. Baretta;Sarah Koch;Inés Cobo;G. Castaño‐Vinyals;R. de Cid;A. Carreras;J. Buekers;J. Garcia;J. Inauen;G. Chevance
  • 通讯作者:
    G. Chevance
imaging of the airways in older ex-smokers Evidence for dysanapsis using computed tomographic
老年戒烟者的气道成像 使用计算机断层扫描提供呼吸不良的证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Mcwilliams;S. Lam;H. Coxson;A. Sheel;J. Guenette;R. Yuan;Lukas Holy;J. Mayo;Sarah Koch;M. MacInnis;B. Sporer;J. Rupert;M. Koehle;Sabrina S. Wilkie;P. Dominelli;A. William
  • 通讯作者:
    A. William
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß<sub>2</sub>-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction
  • DOI:
    10.1016/j.envint.2020.106182
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sarah Koch;Joseph F. Welch;Raymond Tran;Andrew H. Ramsook;Andy Hung;Christopher Carlsten;Jordan A. Guenette;Michael S. Koehle
  • 通讯作者:
    Michael S. Koehle
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction.
在一项实验室控制的柴油机尾气暴露研究中,对运动引起的支气管收缩的个体吸入短效 β2 激动剂后对恒定负荷运动的通气反应。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.8
  • 作者:
    Sarah Koch;Joseph F Welch;Raymond Tran;A. Ramsook;A. Hung;C. Carlsten;J. Guenette;M. Koehle
  • 通讯作者:
    M. Koehle
Resistance of tele-service workers : implications for qualitative policy research
远程服务人员的抵制:对定性政策研究的影响
  • DOI:
    10.14288/1.0089443
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sarah Koch
  • 通讯作者:
    Sarah Koch

Sarah Koch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Koch', 18)}}的其他基金

Exploring the Topology and Geometry of Dynamical Subvarieties
探索动力学子类型的拓扑和几何
  • 批准号:
    2104649
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Polynomials, Geometry, and Dynamics
职业:多项式、几何和动力学
  • 批准号:
    1452392
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Complex Dynamics and Moduli Spaces
复杂动力学和模空间
  • 批准号:
    1422335
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Complex Dynamics and Moduli Spaces
复杂动力学和模空间
  • 批准号:
    1300315
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0802977
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: Current Developments in Mathematics
会议:数学的当前发展
  • 批准号:
    1933415
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
International Conference: Developments in Language Theory 2020
国际会议:2020 年语言理论的发展
  • 批准号:
    1945852
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Current Developments in Mathematics Conference
数学会议的最新进展
  • 批准号:
    1835084
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in Continuum Mechanics and Partial Differential Equations
连续介质力学和偏微分方程最新发展会议
  • 批准号:
    1500939
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference on "Harmonic Analysis and Partial Differential Equations: Recent Developments and Future Directions"
“调和分析和偏微分方程:最新进展和未来方向”会议
  • 批准号:
    1402227
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Current Developments in Mathematics Conference, November 21-22, 2014
数学会议最新进展,2014 年 11 月 21-22 日
  • 批准号:
    1443462
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
  • 批准号:
    1203237
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
2011 US-HUPO Conference -- Proteomics: New Developments and Grand Challenges
2011年US-HUPO会议——蛋白质组学:新进展与重大挑战
  • 批准号:
    8128049
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
CBMS Regional Conference in the Mathematical Sciences-"Radial Basis Functions: Mathematical Developments and Applications"
CBMS数学科学区域会议-“径向基函数:数学发展与应用”
  • 批准号:
    1040883
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了