Exploring the Topology and Geometry of Dynamical Subvarieties
探索动力学子类型的拓扑和几何
基本信息
- 批准号:2104649
- 负责人:
- 金额:$ 40.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dynamical systems are all around us: they govern the motion of the planets, the weather, the stock market, the ecosystems in which we live. These systems depend on a variety of parameters, and as these parameters change, the corresponding system is affected. Understanding how dynamical systems change with different parameters is a very complicated and delicate question that is not even completely understood in the simplest of mathematical models. However, there is one shining success story in this regard: that is, the parameter space, or "moduli space", of complex quadratic polynomials. This space contains the famous Mandelbrot Set, which has been thoroughly studied over the last 40 years. The research outlined in this proposal explores different parameter spaces associated to particular dynamical systems, with a view toward understanding them to the same extent that the mathematical community understands the space where the Mandelbrot set lives. This proposal also contains a significant outreach component to support the Math Corps at U(M), a free math Summer Camp for middle school students and high school mentors.A major goal in the field of complex dynamics is to understand dynamical moduli spaces. The most successful endeavor in this regard has been the study of the moduli space of quadratic polynomials where the Mandelbrot Set lives, a fundamental object in the subject. Ultimately, we strive to understand the moduli space of rational maps of arbitrary degree to the same extent that we understand the moduli space of quadratic polynomials. Many tools from complex analysis that pave the way for key breakthroughs in the one-dimensional setting do not carry over to higher dimensions. So instead of considering the whole moduli space, PI follows an approach initiated by William Thurston and investigate sub-varieties of moduli space. The most natural sub-varieties to study are those that come from dynamical conditions, like imposing combinatorial constraints on the forward orbits of critical points. One may view Thurston’s Topological Characterization of Rational Maps as a first step. It provides a way to understand zero-dimensional dynamical sub-varieties; that is, those that consist of postcritically finite parameters. Following Epstein, the PI will adapt Thurston’s ideas and constructions and shall develop a setting in which to study higher-dimensional dynamical sub-varieties of moduli spaces. PI will explore this theory by working with one-dimensional dynamical sub-varieties in the moduli space of quadratic rational maps, and one-dimensional dynamical sub-varieties in the moduli space of cubic polynomials, where there are already very challenging and fundamental problems concerning their topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统就在我们周围:它们支配着行星的运动、天气、股票市场和我们生活的生态系统。这些系统依赖于各种参数,并且当这些参数改变时,相应的系统受到影响。了解动力系统如何随不同参数变化是一个非常复杂和微妙的问题,即使在最简单的数学模型中也无法完全理解。然而,在这方面有一个光辉的成功故事:那就是复二次多项式的参数空间或“模空间”。这个空间包含了著名的曼德尔布罗特集,它在过去的40年里得到了深入的研究。本提案中概述的研究探索了与特定动力系统相关的不同参数空间,以期在数学界理解Mandelbrot集所在空间的相同程度上理解它们。该提案还包含一个重要的外展部分,以支持U(M)的数学团,这是一个面向中学生和高中导师的免费数学夏令营。在这方面最成功的奋进一直是研究的模空间的二次多项式的曼德尔布罗特集的生活,一个基本对象的主题。最终,我们将努力理解任意阶有理映射的模空间,就像我们理解二次多项式的模空间一样。许多复杂分析的工具为一维环境中的关键突破铺平了道路,但这些工具并不能推广到更高的维度。因此,PI没有考虑整个模空间,而是遵循William Thurston的方法,研究模空间的子簇。要研究的最自然的子变种是那些来自动力学条件的子变种,比如对临界点的前向轨道施加组合约束。人们可以把瑟斯顿的有理映射的拓扑刻画看作是第一步。它提供了一种理解零维动力学子簇的方法;也就是说,那些由后临界有限参数组成的子簇。继爱泼斯坦,PI将适应瑟斯顿的想法和建设,并应制定一个设置中,研究高维动力子品种的模空间。PI将通过研究二次有理映射模空间中的一维动态子簇和三次多项式模空间中的一维动态子簇来探索这一理论,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Koch其他文献
Resilience characterized and quantified from physical activity data: A tutorial in R.
根据身体活动数据表征和量化的复原力:R 教程。
- DOI:
10.1016/j.psychsport.2022.102361 - 发表时间:
2023 - 期刊:
- 影响因子:3.4
- 作者:
D. Baretta;Sarah Koch;Inés Cobo;G. Castaño‐Vinyals;R. de Cid;A. Carreras;J. Buekers;J. Garcia;J. Inauen;G. Chevance - 通讯作者:
G. Chevance
imaging of the airways in older ex-smokers Evidence for dysanapsis using computed tomographic
老年戒烟者的气道成像 使用计算机断层扫描提供呼吸不良的证据
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Mcwilliams;S. Lam;H. Coxson;A. Sheel;J. Guenette;R. Yuan;Lukas Holy;J. Mayo;Sarah Koch;M. MacInnis;B. Sporer;J. Rupert;M. Koehle;Sabrina S. Wilkie;P. Dominelli;A. William - 通讯作者:
A. William
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß<sub>2</sub>-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction
- DOI:
10.1016/j.envint.2020.106182 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Sarah Koch;Joseph F. Welch;Raymond Tran;Andrew H. Ramsook;Andy Hung;Christopher Carlsten;Jordan A. Guenette;Michael S. Koehle - 通讯作者:
Michael S. Koehle
Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction.
在一项实验室控制的柴油机尾气暴露研究中,对运动引起的支气管收缩的个体吸入短效 β2 激动剂后对恒定负荷运动的通气反应。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:11.8
- 作者:
Sarah Koch;Joseph F Welch;Raymond Tran;A. Ramsook;A. Hung;C. Carlsten;J. Guenette;M. Koehle - 通讯作者:
M. Koehle
Resistance of tele-service workers : implications for qualitative policy research
远程服务人员的抵制:对定性政策研究的影响
- DOI:
10.14288/1.0089443 - 发表时间:
2000 - 期刊:
- 影响因子:5.5
- 作者:
Sarah Koch - 通讯作者:
Sarah Koch
Sarah Koch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Koch', 18)}}的其他基金
Dynamical Developments: A Conference in Complex Dynamics and Teichmuller Theory
动力学发展:复杂动力学和泰希米勒理论会议
- 批准号:
1500750 - 财政年份:2015
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
CAREER: Polynomials, Geometry, and Dynamics
职业:多项式、几何和动力学
- 批准号:
1452392 - 财政年份:2015
- 资助金额:
$ 40.75万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
- 批准号:
EP/Z531224/1 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
- 批准号:
2304920 - 财政年份:2023
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 40.75万 - 项目类别:
Standard Grant