In-situ X-ray Tomography and Chemical Tracer Experiments Examining Hydrothermal Alteration of Peridotite: Pore Scale Studies with Implications for Water-Rock Interaction Models
原位 X 射线断层扫描和化学示踪实验检查橄榄岩的热液蚀变:孔隙尺度研究及其对水-岩石相互作用模型的影响
基本信息
- 批准号:1426695
- 负责人:
- 金额:$ 25.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The porosity and permeability of rocks is impacted heavily by reactions between minerals and through-going fluids. The resulting dissolution of minerals that are unstable at the temperature, pressure, and chemical conditions at which the fluids and rocks are interacting and the precipitation of more stable mineral species in the pores, fractures, and grain boundaries between minerals controls where and how much porosity a rock has and how easily fluids can flow through it. This research uses novel, flow-through, hydrothermal, reactor vessels where changes in the porosity and permeability of rocks and the precipitation and dissolution of minerals can be observed and measured in real time. Results of these experiments will be analyzed using a mathematical technique (i.e., Lattice-Boltzmann approach) that provides a better simulation of the fine-scale processes than mathematical techniques presently used in water-rock interaction studies that depend solely on continuum conditions. Intact cores of classic seafloor peridotites, rocks that commonly host or are the source of sulfide-rich, hydrothermal deposits on the seafloor, will be used in the experiments; and alteration of the original mineralogy will be tracked using the stable isotopes of Ca, Mg, and Si, which will document reactions and reaction rates of carbonate and silicate minerals. Broader impacts of the work include improving infrastructure for science by developing new experimental and mathematical methods to advance studies of water-rock interaction and how the porosity and permeability of geological materials change as rocks and sediments react with waters flowing through them. The research has significant potential applications in improving our understanding of the behavior of carbon sequestration reservoirs, the migration of pollutants, and the conditions of nuclear waste disposal. The project also involves undergraduate students from the National Science Foundation Research Experience for Undergraduates (NSF-REU) program in cutting-edge science; trains a graduate student and a postdoc; and helps to develop and verify theoretical and model simulations use to predict the chemical and physical property evolution of natural rocks and fluids.This research focuses on understanding the hydrolysis and carbonation of mantle peridotite by through-going aqueous fluids, an important process affecting the geochemical and geophysical properties of the ocean crust at mid-ocean ridges and in subduction zones. Reactions will be examined using coupled experimental, analytical, and theoretical approaches that emphasize the time series monitoring of the chemical and physical evolution of peridotite-fluid systems using a novel flow-through hydrothermal reactor and transparent reaction cells that are coupled to an X-ray Computed Tomography instrument that allows changes in mineral dissolution and precipitation processes to be examined in real time and in high resolution. This allows direct investigation of changes in the 3D architecture of the rock on a fine scale during water-rock interaction. Chemical tracers using non-traditional stable isotopes (Si, Mg and Ca) will be used to constrain mineral dissolution and precipitation rates and indicate changes in mineral surface area. The experiments and their results will be modeled using a Lattice-Boltzmann multicomponent, multiphase, fluid flow and solute transport computer code with the results being used to develop more accurate reservoir-scale modeling approaches using continuum-scale simulators. Goals of the research are to investigate the feedback between fluid-mineral reactions and associated pore-space geometry changes in peridotites that result from processes like fluid flow, advection of chemical species, and reaction locations and reaction rates. Samples will consist of cores of seafloor peridotite.
岩石的孔隙度和渗透率受矿物和流体之间的反应的影响很大。在流体和岩石相互作用的温度、压力和化学条件下不稳定的矿物的溶解,以及更稳定的矿物物种在孔隙、裂缝和矿物之间的晶界中的沉淀,控制着岩石的孔隙度和孔隙度的大小,以及流体流过岩石的容易程度。反应器容器,其中可以真实的时间观察和测量岩石的孔隙度和渗透率以及矿物的沉淀和溶解的变化。这些实验的结果将使用数学技术(即,格子玻尔兹曼方法),提供了一个更好的模拟精细尺度的过程比目前使用的数学技术在水-岩相互作用的研究,只依赖于连续条件。实验中将使用典型海底橄榄岩的完整岩心,这些岩石通常是海底富含硫化物的热液矿床的宿主或来源;将使用Ca、Mg和Si的稳定同位素跟踪原始矿物学的变化,这将记录碳酸盐和硅酸盐矿物的反应和反应速率。这项工作的更广泛影响包括通过开发新的实验和数学方法来改善科学基础设施,以推进水-岩石相互作用的研究,以及地质材料的孔隙度和渗透率如何随着岩石和沉积物与流经它们的沃茨的反应而变化。 该研究在提高我们对碳封存库行为、污染物迁移和核废料处置条件的理解方面具有重要的潜在应用价值。该项目还涉及来自国家科学基金会本科生研究经验(NSF-REU)计划的本科生在尖端科学;培训研究生和博士后;并有助于发展和验证用于预测天然岩石和流体的化学和物理性质演化的理论和模型模拟。本研究的重点是了解地幔橄榄岩通过-这是一个影响洋中脊和俯冲带洋壳地球化学和地球物理特性的重要过程。反应将使用耦合实验,分析和理论的方法,强调橄榄岩流体系统的化学和物理演化的时间序列监测,使用一种新的流动通过水热反应器和透明的反应细胞,耦合到X射线计算机断层扫描仪,允许矿物溶解和沉淀过程的变化被检查在真实的时间和高分辨率。 这允许在水-岩石相互作用期间在精细尺度上直接调查岩石的3D结构的变化。使用非传统稳定同位素(Si、Mg和Ca)的化学示踪剂将用于限制矿物溶解和沉淀速率,并指示矿物表面积的变化。实验及其结果将使用格子玻尔兹曼多组分,多相,流体流动和溶质输运计算机代码建模,其结果用于开发更准确的连续尺度模拟器的小行星尺度建模方法。该研究的目标是调查流体矿物反应和相关的孔隙空间几何形状的变化,如流体流动,化学物质的平流,反应位置和反应速率的过程中产生的橄榄岩之间的反馈。样品将包括海底橄榄岩的岩芯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Seyfried其他文献
Estimating the sensitivity of state tax revenue to cyclical and wealth effects
- DOI:
10.1007/bf02751594 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.500
- 作者:
William Seyfried;Louis Pantuosco - 通讯作者:
Louis Pantuosco
William Seyfried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Seyfried', 18)}}的其他基金
Acquisition of TQ-ICP-MS for Geochemical Research in the Department of Earth and Environmental Science at the University of Minnesota
明尼苏达大学地球与环境科学系采购用于地球化学研究的 TQ-ICP-MS
- 批准号:
1946945 - 财政年份:2020
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
A power law model of dynamic marine phytoplankton stoichiometry
动态海洋浮游植物化学计量的幂律模型
- 批准号:
1827948 - 财政年份:2018
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Accomplishment Based Renewal: An experimental study of phase separation and mineral fluid equilibria on iron and hydrogen transport in mid-ocean ridge hydrothermal systems
基于成就的更新:洋中脊热液系统中铁和氢传输的相分离和矿物流体平衡的实验研究
- 批准号:
1736679 - 财政年份:2017
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Collaborative Research: The Response of Continental Hydrothermal Systems to Tectonic, Magmatic, and Climatic Forcing
合作研究:大陆热液系统对构造、岩浆和气候强迫的响应
- 批准号:
1515377 - 财政年份:2015
- 资助金额:
$ 25.14万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental Study of Mineral-Fluid Fractionation of Non-Traditional Isotopes (Fe, Cu, Zn, S) with Implications for Seafloor Hydrothermal Systems
合作研究:非传统同位素(Fe、Cu、Zn、S)的矿物流体分馏实验研究对海底热液系统的影响
- 批准号:
1232704 - 财政年份:2012
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Experimental Calibration of Mineral-Fluid Fractionation of Non-Traditional Isotopes (Fe, Cu, 33-S): Implications for Mass Transfer in Seafloor Hydrothermal Systems
非传统同位素(Fe、Cu、33-S)矿物流体分馏的实验校准:对海底热液系统中传质的影响
- 批准号:
1061308 - 财政年份:2011
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
EAGER: Micromachined Sensors for Multi-functional and Autonomous Analysis of Geofluids: A New Approach to the Design and Performance of Chemical Sensors in Extreme Environments
EAGER:用于地质流体多功能和自主分析的微机械传感器:极端环境中化学传感器设计和性能的新方法
- 批准号:
1043064 - 财政年份:2010
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Acquisition and Development of ICP-MS Instrumentation for Ocean Science Research at the University of Minnesota
明尼苏达大学海洋科学研究用 ICP-MS 仪器的购置和开发
- 批准号:
0961188 - 财政年份:2010
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Phase Separation in the Aftermath of Subseafloor Magmatic Events: An Experimental Study of Processes of Acid-Generation, Aqueous Speciation, and Vapor-Phase Transport of Fe
海底岩浆事件后的相分离:酸生成、水相形成和铁的气相传输过程的实验研究
- 批准号:
0751771 - 财政年份:2008
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Effect of Redox and pH on the Reaction Kinetics of Anhydrite in a Coupled Chemical System: An Experimental Study with Implications for Modeling Vent Fluid Evolution at EPR 9-10 N
耦合化学系统中氧化还原和 pH 对硬石膏反应动力学的影响:一项实验研究,对 EPR 9-10 N 下排气流体演化建模具有意义
- 批准号:
0813861 - 财政年份:2008
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
相似国自然基金
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
同步X-ray成像对调控自噬的联合疗法抗三阴性乳腺癌机制研究
- 批准号:22ZR1470600
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于时空信息融合的2D X-ray到3D CT图像配准实时引导肺癌放疗研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
不同基因型大豆根系生长改善压实土壤结构的机制研究
- 批准号:42007010
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
荷载、浸水条件下花岗岩残积土微细观结构演化及损伤本构关系
- 批准号:51978413
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
基于X射线线形分析技术的钒高温高压强度特性研究
- 批准号:11872056
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
基于原位局域表面等离子体共振技术的CeO2/Ag催化剂表界面效应探索及在催化氧化甲醛中应用
- 批准号:21802066
- 批准年份:2018
- 资助金额:26.6 万元
- 项目类别:青年科学基金项目
CAT、DSA、x-ray与解剖技术相结合确立小腿后外侧皮支链皮瓣血管构筑
- 批准号:31860294
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
分子体系激光冷却的机理和方法的高精度理论研究
- 批准号:21773251
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
若干蛋白质分子的取向测量的二维光谱理论研究
- 批准号:21703221
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrated high-resolution experimental in-situ X-ray Computed Tomography system
集成高分辨率实验原位X射线计算机断层扫描系统
- 批准号:
499115956 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Major Research Instrumentation
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
- 批准号:
10466802 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
- 批准号:
10581369 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
- 批准号:
10624852 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
- 批准号:
10183362 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
MRI: Acquisition of High-Resolution X-Ray Computed Tomography System for Real-Time, In Situ Studies of Various Effects on Microstructure of Materials
MRI:获取高分辨率 X 射线计算机断层扫描系统,用于实时、原位研究对材料微观结构的各种影响
- 批准号:
2018768 - 财政年份:2020
- 资助金额:
$ 25.14万 - 项目类别:
Standard Grant
Mobilising magma in the largest eruptions: Quantifying critical processes using in situ real time x-ray tomography
在最大规模的喷发中调动岩浆:使用原位实时 X 射线断层扫描量化关键过程
- 批准号:
NE/M018687/2 - 财政年份:2019
- 资助金额:
$ 25.14万 - 项目类别:
Fellowship
An X-ray Micro-Computed Tomography Facility with in-situ/in operando testing.
具有现场/操作测试功能的 X 射线微计算机断层扫描设备。
- 批准号:
EP/T006390/1 - 财政年份:2019
- 资助金额:
$ 25.14万 - 项目类别:
Research Grant
Four-Dimensional In Situ Visualization of Fuel Cell Degradation by Nano X-ray Computed Tomography
通过纳米 X 射线计算机断层扫描对燃料电池降解进行四维原位可视化
- 批准号:
475270-2015 - 财政年份:2017
- 资助金额:
$ 25.14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Dynamic, in-situ imaging of capillary imbibition in rock using simultaneous neutron and X-ray computed tomography
使用同步中子和 X 射线计算机断层扫描对岩石中毛细管渗吸进行动态原位成像
- 批准号:
EP/N021665/1 - 财政年份:2016
- 资助金额:
$ 25.14万 - 项目类别:
Research Grant