Demand Analysis for Matching Markets
匹配市场需求分析
基本信息
- 批准号:1427231
- 负责人:
- 金额:$ 22.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The assignment of students to various schools in their district can have important implications for student achievement and student welfare. A large body of theoretical work in Economics studies the design of matching markets. Several school districts including New York, Chicago, Boston, Cambridge, Denver and New Orleans employ mechanisms in which students rank schooling options and a computerized algorithm matches students to schools. A similar mechanism is used to assign medical residents to residency training positions. The design and their implementation is based on theoretical insights for which Alvin E. Roth and Loyd Shapley were awarded the Nobel Prize in 2012. However, the empirical study of these markets is lagging. An important barrier to progress is methodological since most mechanisms still in use today do not make it safe for agents to report their true preferences. This fact may have important implications on student welfare, and fairness. The primary goal of the proposed research is to develop new methods for estimating preference models using data from matching markets, and apply them to analyze policy relevant questions that have been thus far theoretically and empirically intractable.The proposed research will develop a new method for estimating a discrete choice model using reported preferences from an assignment mechanism where participants do not have the incentive to report their preferences truthfully. Previous research estimating preferences has largely been limited to settings where particular institutional/theoretical features support treating reported preferences as truthful or specific details of the mechanism provide partial information on preferences. Our baseline approach analyzes information that is revealed by assuming that the observed reports are optimal. We then analyze relaxations of this strong form of rationality to study what can be learned under weaker assumptions on agents' sophistication. The methodological analysis involves studying large sample properties of a two-step estimator, extending techniques from the literature on demand models to study non-parametric identification of the model, and comparing computational methods for implementing the estimator. As an application, the proposed research will study the elementary school admissions system in Cambridge, MA that uses a variant of the (old) Boston mechanism, which is susceptible to manipulation. Subsequently, we plan to compare preference estimates under varying assumptions on the sophistication to assess their sensitivity to economic assumptions.
将学生分配到他们所在地区的不同学校对学生的成绩和学生福利有重要影响。经济学中有大量的理论著作研究匹配市场的设计。包括纽约、芝加哥、波士顿、剑桥、丹佛和新奥尔良在内的几个学区采用了学生对学校选择进行排名的机制,并通过计算机算法将学生与学校进行匹配。一个类似的机制被用来分配住院医师的住院医师培训职位。设计和他们的实施是基于理论的见解,阿尔文E。2012年,罗斯和罗伊德·沙普利被授予诺贝尔奖。然而,对这些市场的实证研究却相对滞后。取得进展的一个重要障碍是方法问题,因为目前仍在使用的大多数机制并不能使代理人安全地报告他们的真实偏好。这一事实可能对学生福利和公平有重要影响。该研究的主要目标是开发新的方法,利用匹配市场的数据估计偏好模型,并将其应用于分析迄今为止在理论和经验上难以解决的政策相关问题。拟议的研究将开发一种新的方法,用于估计离散选择模型,该模型使用来自参与者没有动机报告其偏好的分配机制的报告偏好说实话以往的研究估计偏好在很大程度上被限制在特定的机构/理论特征支持处理报告的偏好作为真实的或具体的机制细节提供部分信息的偏好设置。我们的基线方法分析的信息是通过假设观察到的报告是最佳的。然后,我们分析放松这种强形式的理性,研究什么可以学到较弱的假设下代理的复杂性。方法分析包括研究两步估计的大样本特性,从文献中的需求模型扩展技术来研究模型的非参数识别,并比较计算方法来实现估计。作为应用,拟议的研究将研究马萨诸塞州剑桥的小学招生系统,该系统使用(旧)波士顿机制的变体,该机制容易被操纵。随后,我们计划比较不同假设下的偏好估计,以评估其对经济假设的敏感性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demand Analysis Using Strategic Reports: An Application to a School Choice Mechanism
- DOI:10.3982/ecta13615
- 发表时间:2018-03-01
- 期刊:
- 影响因子:6.1
- 作者:Agarwal, Nikhil;Somaini, Paulo
- 通讯作者:Somaini, Paulo
Policy Analysis in Matching Markets
配套市场政策分析
- DOI:10.1257/aer.p20171112
- 发表时间:2017
- 期刊:
- 影响因子:10.7
- 作者:Agarwal, Nikhil
- 通讯作者:Agarwal, Nikhil
The Welfare Effects of Coordinated Assignment: Evidence from the New York City High School Match
- DOI:10.1257/aer.20151425
- 发表时间:2017-12-01
- 期刊:
- 影响因子:10.7
- 作者:Abdulkadiroglu, Atila;Agarwal, Nikhil;Pathak, Parag A.
- 通讯作者:Pathak, Parag A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikhil Agarwal其他文献
Energy Aware, Scalable, K-Hop Based Cluster Formation In MANET
MANET 中的能源感知、可扩展、基于 K-Hop 的集群形成
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Priyanka Chatterjee;Nikhil Agarwal - 通讯作者:
Nikhil Agarwal
10 CHAPTER Market design ✩
第 10 章 市场设计 ✩
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Nikhil Agarwal;Eric Budish - 通讯作者:
Eric Budish
Software Coverage Analysis: Black Box Approach Using ANT System
软件覆盖率分析:使用 ANT 系统的黑盒方法
- DOI:
10.4018/jaec.2012070104 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Praveen Ranjan Srivastava;S. S. Naruka;Afaque Alam;Nikhil Agarwal;V. Shah - 通讯作者:
V. Shah
PRELIMINARY: Please do not cite or quote without permission TOXIC EXPOSURE IN AMERICA: ESTIMATING FETAL AND INFANT HEALTH OUTCOMES
初步:未经许可,请勿引用或引用美国的有毒暴露:估计胎儿和婴儿健康结果
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Nikhil Agarwal;Chanont Banternghansa;Linda T.M. Bui - 通讯作者:
Linda T.M. Bui
Demand Analysis under Latent Choice Constraints
潜在选择约束下的需求分析
- DOI:
10.3386/w29993 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nikhil Agarwal;Paulo Somaini - 通讯作者:
Paulo Somaini
Nikhil Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikhil Agarwal', 18)}}的其他基金
Outcomes and the Value of Choice in Assignment Problems
分配问题中的结果和选择的价值
- 批准号:
1948714 - 财政年份:2020
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Empirical Analysis of Resource Allocation Problems
资源配置问题的实证分析
- 批准号:
1729090 - 财政年份:2017
- 资助金额:
$ 22.46万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
MAtching Genes with MOLecules for FUNctional Analysis (MAGic-MOLFUN)
将基因与分子匹配进行功能分析 (MAGic-MOLFUN)
- 批准号:
EP/X03142X/1 - 财政年份:2023
- 资助金额:
$ 22.46万 - 项目类别:
Research Grant
Empirical Analysis of the Effect of Hospital Performance Disclosure on Physician-Patient Matching and Regional Healthcare Disparities
医院绩效披露对医患匹配和区域医疗差异影响的实证分析
- 批准号:
22K13418 - 财政年份:2022
- 资助金额:
$ 22.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
1953244 - 财政年份:2020
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
1953267 - 财政年份:2020
- 资助金额:
$ 22.46万 - 项目类别:
Standard Grant
An effectiveness of family-focused group psychoeducation for anorexia nervosa using a propensity score matching analysis
使用倾向评分匹配分析以家庭为中心的团体心理教育对神经性厌食症的有效性
- 批准号:
19K24220 - 财政年份:2019
- 资助金额:
$ 22.46万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Machine-learning based big textual data analysis for job candidate resources extraction and matching
基于机器学习的大文本数据分析,用于职位候选人资源提取和匹配
- 批准号:
538907-2019 - 财政年份:2019
- 资助金额:
$ 22.46万 - 项目类别:
Engage Grants Program
Research on NLP-based semantic analysis system for extracting, classifying and matching legal clause segments against treatises
基于NLP的法律条款片段与论文的提取、分类和匹配语义分析系统研究
- 批准号:
545000-2019 - 财政年份:2019
- 资助金额:
$ 22.46万 - 项目类别:
Applied Research and Development Grants - Level 2
A study of the usefulness of a job analysis checklist for matching in employment support of PwDs
工作分析清单对残疾人士就业支持匹配的有用性研究
- 批准号:
19K13977 - 财政年份:2019
- 资助金额:
$ 22.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on manufacturing matching methods based on analysis of patent information and customer value
基于专利信息和客户价值分析的制造匹配方法研究
- 批准号:
19K01888 - 财政年份:2019
- 资助金额:
$ 22.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)