DiD: MIning Relationships Among variables in large datasets from CompLEx systems (MIRACLE)
DiD:挖掘来自 CompLEx 系统的大型数据集中变量之间的关系 (MIRACLE)
基本信息
- 批准号:1430411
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Some of the most pressing questions for social scientists -- ranging from efforts to better understand the interactions between humans and the environment to predicting how an aging population will impact the US and global economy -- require making sense of large amounts of data. As a result, social scientists are increasingly using new computational modeling methods to explore the dynamics and consequences of human interactions. These new methods, including agent-based models, provide ways to explore research questions that cannot be investigated using traditional statistical approaches. But appropriate methods to mine, analyze, and synthesis large-scale complex model output data in order to answer social science research questions are still lacking. Traditional analysis methods are designed for data that are linear, continuous, and normally distributed, while data from models of complex socio-ecological systems are non-linear, discontinuous, and power-law distributed. In this project, the researchers seek to address these challenges by developing, applying, and disseminating an integrated environment for analysis and visualization of data generated by complex systems models. An important broader impact is that the research will lead to tools that will allow stakeholders, policy makers, and the general public to explore, interact with, and provide feedback on otherwise difficult-to-understand models.The project builds on ongoing research by the project team, and uses the NSF-supported CoMSES Net Computational Modeling Library as a platform to make this suite of collaborative, open-source tools broadly available. This community environment will allow any users to post model output along with associated metadata, visualize and analyze output data, comment on and share analyses, and conduct comparative and meta-analysis, drawing on data from other projects. This cyber-infrastructure will provide semi-automated means of discovering relationships that can lead to new theories about how social systems work, test the realism of simulations against knowledge from empirical systems, and propose new research directions to explore.
对于社会科学家来说,一些最紧迫的问题--从努力更好地理解人类与环境之间的相互作用,到预测人口老龄化将如何影响美国和全球经济--需要理解大量数据。因此,社会科学家越来越多地使用新的计算建模方法来探索人类互动的动力学和后果。这些新的方法,包括基于代理的模型,提供了探索无法使用传统统计方法调查的研究问题的方法。但对大规模复杂模型输出数据进行挖掘、分析和综合以回答社会科学研究问题的适当方法仍然缺乏。传统的分析方法是针对线性、连续和正态分布的数据,而来自复杂社会生态系统模型的数据是非线性、不连续和幂分布的。在这个项目中,研究人员试图通过开发、应用和传播一个用于分析和可视化复杂系统模型生成的数据的集成环境来解决这些挑战。一个重要的更广泛的影响是,这项研究将产生工具,允许利益相关者、政策制定者和普通公众探索其他难以理解的模型,与之互动并提供反馈。该项目建立在项目团队正在进行的研究的基础上,并使用NSF支持的CoMSES网络计算模型库作为平台,使这套协作的开源工具广泛可用。这个社区环境将允许任何用户发布模型输出以及相关的元数据,可视化和分析输出数据,评论和共享分析,并利用其他项目的数据进行比较和荟萃分析。这种网络基础设施将提供半自动的方法来发现关系,这些关系可以导致关于社会制度如何工作的新理论,测试模拟的真实性,对照经验系统的知识,并提出新的研究方向来探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C Michael Barton其他文献
C Michael Barton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C Michael Barton', 18)}}的其他基金
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
- 批准号:
2218785 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Frameworks: Collaborative Research: Integrative Cyberinfrastructure for Next-Generation Modeling Science
框架:协作研究:下一代建模科学的综合网络基础设施
- 批准号:
2103905 - 财政年份:2021
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
BD Spokes: SPOKE: WEST: Accelerating and Catalyzing Reproducibility in Scientific Computation and Data Synthesis
BD Spokes:SPOKE:WEST:加速和促进科学计算和数据合成的可重复性
- 批准号:
1636796 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: The Role of Fire in Long Term Human Niche-Construction
博士论文改进奖:火灾在长期人类生态位建设中的作用
- 批准号:
1656342 - 财政年份:2016
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: Mechanisms For Long Term Maintenance Of Social Stability
博士论文改进资助:长期维护社会稳定的机制
- 批准号:
1538784 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: The Emergence Of Social Complexity In Small Scale Societies
博士论文改进补助金:小规模社会中社会复杂性的出现
- 批准号:
1535840 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Building Capacity for 21st Century Social Sciences; Washington, D.C., Spring, 2015
建设 21 世纪社会科学的能力;
- 批准号:
1444875 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
CNH: The Emergence of Coupled Natural and Human Landscapes in the Western Mediterranean
CNH:西地中海自然与人文景观耦合的出现
- 批准号:
1313727 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EaSM2--Linking Human and Earth System Models to Assess Regional Impacts and Adaption in Urban Systems and Their Hinterlands
合作研究:EaSM2——将人类和地球系统模型联系起来,评估城市系统及其腹地的区域影响和适应
- 批准号:
1243089 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: The Archaeology of Local Human Response to a Global Environmental Transformation
博士论文改进补助金:当地人类对全球环境转变反应的考古学
- 批准号:
0941208 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Data mining epidemiological relationships
数据挖掘流行病学关系
- 批准号:
MC_UU_00032/3 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Intramural
Development of Computational Methods for Mining Causal Relationships Based on Microscopic Images
基于显微图像的因果关系挖掘计算方法的发展
- 批准号:
19K12226 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Examining groundwater-flood and soil moisture-flood relationships across scales using national-scale data mining, deep learning and knowledge distillation
使用国家规模的数据挖掘、深度学习和知识蒸馏来检查跨尺度的地下水-洪水和土壤水分-洪水关系
- 批准号:
1832294 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Data mining epidemiological relationships: integration of causal analysis with published evidence
数据挖掘流行病学关系:因果分析与已发表证据的整合
- 批准号:
MC_UU_00011/4 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Intramural
EAGER: A novel set of computational methods for mining nonlinear and high-order relationships
EAGER:一套用于挖掘非线性和高阶关系的新颖计算方法
- 批准号:
1744661 - 财政年份:2017
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Developing novel data mining methods to reveal complex group relationships from heterogeneous data
开发新颖的数据挖掘方法,从异构数据中揭示复杂的群体关系
- 批准号:
DP130104090 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Projects
Bolstering pattern mining by taking into account relationships and uncertainty in data
通过考虑数据中的关系和不确定性来支持模式挖掘
- 批准号:
217618-2012 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual
Generation of the iBeetle templates, development of the iBeetle-base to a central gene function database and mining the data for new relationships by clustering
生成 iBeetle 模板,将 iBeetle 基础开发为中央基因功能数据库,并通过聚类挖掘数据以发现新关系
- 批准号:
164476357 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Research Units
Scalable mining of corporate relationships
可扩展的企业关系挖掘
- 批准号:
406917-2010 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Engage Grants Program
CAREER: Mining Genome-wide Chemical-Structure Activity Relationships in Emergent Chemical Genomics Databases
职业:在新兴化学基因组数据库中挖掘全基因组化学结构活性关系
- 批准号:
0845951 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant