DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
基本信息
- 批准号:1434799
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMREF: A High-Throughput Computational Morphology Prediction for Organic PhotovoltaicsZhenan Bao (Stanford), Vijay Pande (Stanford), Michael Toney (SSRL)Non-Technical Description: Organic photovoltaic cells (OPVs) are alternatives to conventional solar cells as they promise low-cost mass production combined with lightweight and flexible applications. In particular, they offer a prospect to provide basic electricity to the millions of people in rural areas of undeveloped countries who lack access to the power grid. Many OPV materials have been reported in the literature, but few have shown efficiencies greater than 8%. The key challenge is to design materials that fulfill all the requirements. A typical OPV consists of a donor and an acceptor blended together. Predicting the nanoscale morphology remains one of the biggest challenge in predicting OPV performance. Therefore, many material combinations and large processing parameter space (e.g. donor/acceptor ratio, solvents, annealing conditions, film thickness) presently need to be screened.Technical Description: This project aims at an integrated research plan for the high throughput morphology prediction of OPV materials. A continuous feedback loop between theory, synthesis and characterization will facilitate the exchange of results and streamline the overall development process. A central theme of this project is to develop high-throughput techniques for computational morphology calculation and experimental characterization. The computational development takes advantage of the massive computing power provided by distributed volunteer computing networks. Pande will retool his massive Folding@home simulation engine (which was originally developed for molecular mechanics/dynamics research on biomolecules) to predict the bulk-heterojunction blend morphology for OPVs. Folding@home has allowed Pande and coworkers to perform calculations that could not be performed before, by allowing them to reach timescales that are thousands to millions of times longer than would be possible by traditional means. Bao will design synthesis routes to prepare model compounds for thin film preparation and comparison with theoretically predicted morphology. Bao and Toney will together perform optoelectronic, structural, and morphological measurements on the compounds. The characterization will establish and employ new high-throughput instrumentation. The experimental data, regardless of positive or negative outcome, will be made available to the theory group where it will be added to a collection of empirical data. The latter is utilized in calibration schemes and provides the parameterization for many of the employed models. Extending this data set will improve the related modeling efforts and their predictive capacity. This in turn will lead to an adjustment of the development processes. An extensive results and reference database will serve as the hub for the information exchange between the three participating groups. The vast amount of data accumulated in the course of this project will provide the foundation for a better understanding of the molecular structure/morphology correlations, and it will be an openly available resource for the OPV community.
DMREF:一种用于有机光伏的高通量计算形态预测包振安(Stanford),Vijay Pande(Stanford),Michael Toney(SSRL)非技术描述:有机光伏电池(OPV)是传统太阳能电池的替代品,因为它们承诺低成本的大规模生产与轻便灵活的应用相结合。特别是,它们为欠发达国家农村地区数百万无法使用电网的人提供了基本电力的前景。文献中已经报道了许多口服脊髓灰质炎疫苗材料,但很少有材料显示效率超过8%。关键的挑战是设计出满足所有要求的材料。典型的口服脊髓灰质炎疫苗由供体和受体混合而成。预测纳米级的形态仍然是预测OPV性能的最大挑战之一。因此,目前需要筛选多种材料组合和较大的工艺参数空间(如施主/受主比、溶剂、热处理条件、薄膜厚度)。技术描述:本项目旨在为OPV材料的高通量形态预测提供一个完整的研究计划。理论、合成和表征之间的持续反馈循环将促进结果的交流,并简化整个开发过程。该项目的一个中心主题是开发用于计算形态计算和实验表征的高通量技术。计算开发利用了分布式志愿者计算网络提供的海量计算能力。潘德将重新装备他的庞大的Folding@Home模拟引擎(最初是为生物分子的分子力学/动力学研究而开发的),以预测OPV的体相-异质结混合形态。Folding@home允许潘德和同事执行以前无法执行的计算,因为他们可以达到比传统方法可能长数千到数百万倍的时间尺度。BaO将设计合成路线来制备薄膜制备的模型化合物,并与理论预测的形貌进行比较。鲍康如和托尼将一起对这些化合物进行光电子、结构和形态测量。该表征将建立和使用新的高通量仪器。实验数据,无论是正面或负面的结果,都将提供给理论小组,在那里它将被添加到经验数据集合中。后者在校准方案中使用,并为许多采用的模型提供了参数化。扩展此数据集将改进相关的建模工作及其预测能力。这反过来将导致开发过程的调整。一个广泛的成果和参考数据库将作为三个参与小组之间信息交流的中心。该项目过程中积累的大量数据将为更好地了解分子结构/形态相关性提供基础,并将为口服脊髓灰质炎疫苗社区提供开放的资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenan Bao其他文献
Novel Photonic Materials Containing Porphyrin Rings
含有卟啉环的新型光子材料
- DOI:
10.1007/978-1-4613-0669-6_24 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Zhenan Bao;Luping Yu - 通讯作者:
Luping Yu
Synthesis and physical measurements of a photorefractive polymer
光折变聚合物的合成和物理测量
- DOI:
10.1039/c39920001735 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Luping Yu;Waikin Chan;Zhenan Bao;S. X. Cao - 通讯作者:
S. X. Cao
New polymers for single-layer LEDs
用于单层 LED 的新型聚合物
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Zhonghua Peng;Zhenan Bao;M. Galvin - 通讯作者:
M. Galvin
Air-Stable n-type Conductors and Semiconductors
- DOI:
- 发表时间:
2015-07 - 期刊:
- 影响因子:0
- 作者:
Zhenan Bao - 通讯作者:
Zhenan Bao
On Stress: Combining Human Factors and Biosignals to Inform the Placement and Design of a Skin-like Stress Sensor
关于压力:结合人为因素和生物信号,为类皮肤压力传感器的放置和设计提供信息
- DOI:
10.1145/3613904.3643473 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yasser Khan;M. Mauriello;Parsa Nowruzi;Akshara Motani;Grace Hon;N. Vitale;Jinxing Li;Ja;Amir Foudeh;Dalton Duvio;Erika Shols;M. Chesnut;James A. Landay;Jan Liphardt;Leanne M Williams;Keith D. Sudheimer;Boris Murmann;Zhenan Bao;P. Paredes - 通讯作者:
P. Paredes
Zhenan Bao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenan Bao', 18)}}的其他基金
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
- 批准号:
2203318 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
- 批准号:
2037164 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health
SenSE:人工智能支持的多模态压力传感,实现精准健康
- 批准号:
2037304 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
- 批准号:
1303178 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
- 批准号:
1101901 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
- 批准号:
1209468 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
- 批准号:
0968209 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
- 批准号:
1006989 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
- 批准号:
0901414 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a High Throughput Drug Discovery Platform for Protein Degraders
I-Corps:蛋白质降解剂高通量药物发现平台的转化潜力
- 批准号:
2419488 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
High-throughput development of bacterial PROTACs
细菌 PROTAC 的高通量开发
- 批准号:
MR/Y503484/1 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: High-throughput agile interfaces for cell sorting
EAGER:IMPRESS-U:用于细胞分选的高通量敏捷接口
- 批准号:
2401713 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
TEXAS: Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
德克萨斯州:迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
- 批准号:
MR/Z000017/1 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Research Grant
CAREER: Enabling High-throughput Creep Testing of Advanced Materials through in-situ Micromechanics and Mesoscale Modeling
职业:通过原位微观力学和介观建模实现先进材料的高通量蠕变测试
- 批准号:
2340174 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
SBIR Phase I: Space Biobank: Enabling High Throughput Space-Based Biotech R&D
SBIR 第一阶段:太空生物库:实现高通量天基生物技术 R
- 批准号:
2419674 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Dedicated High-throughput 3D-Electron Diffractometer
专用高通量 3D 电子衍射仪
- 批准号:
LE240100054 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Integrated active microcantilevers for high-throughput nanometrology
用于高通量纳米计量学的集成有源微悬臂梁
- 批准号:
DE240100507 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Discovery Early Career Researcher Award
Designing a Multifunctional Nanoculture System for High-throughput in situ Assessment of Microbial Communities
设计用于微生物群落高通量原位评估的多功能纳米培养系统
- 批准号:
2409648 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant