SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health
SenSE:人工智能支持的多模态压力传感,实现精准健康
基本信息
- 批准号:2037304
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A shared objective of precision health and psychiatry is to precisely measure relevant symptoms and sustain mental health with high precision. Best mental health practices propose the need to identify the early signs of risk factors such as stress. However, mental health research focuses primarily on late-stage symptom assessment via self-report data such as surveys. As a result, clinical practice for mental health mostly consists of reactive treatments. This grant seeks to advance precision mental health by developing an Artificial Intelligence (AI) -enabled platform for continuous and precise measurements of stress. This platform leverages data from a skin-like wearable device that measures cortisol, a stress hormone from sweat, and from sensing techniques based on estimating muscle stiffness changes derived from “fight or flight” stress response, by “repurposing” signals available in billions of existing mobile and computing devices. These data streams will be combined using Machine Learning (ML) algorithms for optimizing data collection, power consumption, and accuracy. Since stress and its effect on mental health deterioration are pervasive, the broader impact of this work could be enormous as well as the basis for new research on precision health in psychiatry. The overall goal of this project is to develop a multimodal sensing platform leveraging AI/ML algorithms to optimize stress prediction and hardware performance. The first step involves validating the skin-inspired wearable for lab stress measurements, followed by redesigning, and validating as a continuous in-the-wild device. It features a set of physiological sensors for collecting heart rate variability (HRV) and electrodermal activity (EDA) data, signals directly correlated with the autonomous nervous system (ANS) response. Two types of sensors for continuous measurement of cortisol level will be tested for high accuracy and selectivity. However, processing and transmitting sensor data continuously in-the-wild requires significant battery capacity. To address this issue, the second step combines the wearable with passive biomechanical sensors and AI/ML algorithms to optimize for continuous stress detection in-the-wild. Additionally, passive sensors transform computer peripheral data (e.g., mice, trackpads, smartphone screens) into parameters correlated to muscle stiffness linked to the “fight or flight” stress response. For example, the system uses inverse filtering techniques to approximate mass-spring-damper (MSD) models derived from mouse displacements or force models derived from the area under the finger on a trackpad. The system employs several AI/ML algorithms including a) compressive sensing to optimize energy efficiency, b) autoencoder models to correct for artifacts, missing data or sensor failures, c) active learning to discover optimal collection times of stress events and labels, and d) cloud computing powered data collection and processing to make predictions based on the best available data. The intellectual merits of this work include 1) a multimodal stress monitoring wearable that measures cortisol from sweat and other physiological signals, 2) biomechanical sensing algorithms that repurpose movement and touch data into muscle stiffness, and 3) AI/ML algorithms that integrate this data to optimize wearable and smartphone power usage, learn ideal sensing scenarios with high precision, improve privacy, optimize data labeling, and optimize the early prediction of stress.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精确健康和精神病学的一个共同目标是精确测量相关症状,并以高精度维持心理健康。最佳的心理健康实践建议,需要确定压力等风险因素的早期迹象。然而,心理健康研究主要集中在通过调查等自我报告数据进行晚期症状评估。因此,心理健康的临床实践主要包括反应性治疗。这笔赠款旨在通过开发一个支持人工智能(AI)的平台来持续和精确地测量压力,以促进精确的心理健康。该平台利用了一种皮肤状可穿戴设备的数据,该设备可以测量皮质醇,皮质醇是一种来自汗液的压力荷尔蒙;该平台还利用了传感技术的数据,这些技术基于对现有移动和计算设备中的数十亿个可用的信号进行“重新调整用途”,来估计“战斗或逃跑”压力反应产生的肌肉僵硬变化。这些数据流将使用机器学习(ML)算法进行组合,以优化数据收集、功耗和准确性。由于压力及其对精神健康恶化的影响是普遍存在的,这项工作的广泛影响可能是巨大的,也是精神病学中关于精确健康的新研究的基础。该项目的总体目标是开发一个多模式传感平台,利用AI/ML算法来优化应力预测和硬件性能。第一步是验证这款受皮肤启发的可穿戴设备是否可用于实验室压力测量,然后重新设计,并验证其是否为连续的野外设备。它具有一套生理传感器,用于收集心率变异性(HRV)和皮肤电活动(EDA)数据,这些信号与自主神经系统(ANS)反应直接相关。用于连续测量皮质醇水平的两种传感器将进行高精度和选择性测试。然而,在野外连续处理和传输传感器数据需要相当大的电池容量。为了解决这个问题,第二步将可穿戴设备与被动生物力学传感器和AI/ML算法相结合,以优化野外连续应力检测。此外,被动传感器将计算机外设数据(如鼠标、触摸板、智能手机屏幕)转换为与肌肉僵硬相关的参数,与“战斗或逃跑”的压力反应有关。例如,该系统使用逆滤波技术来近似质量-弹簧-阻尼器(MSD)模型,该模型来自鼠标位移,或者力模型,该模型来自触控板上手指下方的区域。该系统采用了几种AI/ML算法,包括a)压缩传感以优化能源效率,b)自动编码器模型以校正伪影、丢失数据或传感器故障,c)主动学习以发现压力事件和标签的最佳收集时间,以及d)云计算支持的数据收集和处理以基于最佳可用数据进行预测。这项工作的智力价值包括1)多模式压力监测可穿戴设备,测量汗液和其他生理信号中的皮质醇;2)生物力学传感算法,将运动和触摸数据重新调整为肌肉僵硬;3)AI/ML算法,整合这些数据以优化可穿戴设备和智能手机的电力使用,高精度地学习理想的传感场景,改善隐私,优化数据标签,并优化压力的早期预测。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix Compression via Randomized Low Rank and Low Precision Factorization
- DOI:10.48550/arxiv.2310.11028
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Rajarshi Saha;Varun Srivastava;Mert Pilanci
- 通讯作者:Rajarshi Saha;Varun Srivastava;Mert Pilanci
Training Quantized Neural Networks to Global Optimality via Semidefinite Programming
通过半定规划训练量化神经网络以获得全局最优性
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bartan, Burak;Pilanci, Mert
- 通讯作者:Pilanci, Mert
Optimal sets and solution paths of ReLU networks
ReLU网络的最优集和求解路径
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mishkin, Aaron
- 通讯作者:Mishkin, Aaron
Convex Neural Autoregressive Models: Towards Tractable, Expressive, and Theoretically-Backed Models for Sequential Forecasting and Generation
凸神经自回归模型:面向顺序预测和生成的易于处理、富有表现力且有理论支持的模型
- DOI:10.1109/icassp39728.2021.9413662
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Gupta, Vikul;Bartan, Burak;Ergen, Tolga;Pilanci, Mert
- 通讯作者:Pilanci, Mert
Neural Fisher Discriminant Analysis: Optimal Neural Network Embeddings in Polynomial Time
神经 Fisher 判别分析:多项式时间内的最优神经网络嵌入
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bartan, Burak;Pilanci, Mert
- 通讯作者:Pilanci, Mert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenan Bao其他文献
Novel Photonic Materials Containing Porphyrin Rings
含有卟啉环的新型光子材料
- DOI:
10.1007/978-1-4613-0669-6_24 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Zhenan Bao;Luping Yu - 通讯作者:
Luping Yu
Synthesis and physical measurements of a photorefractive polymer
光折变聚合物的合成和物理测量
- DOI:
10.1039/c39920001735 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Luping Yu;Waikin Chan;Zhenan Bao;S. X. Cao - 通讯作者:
S. X. Cao
New polymers for single-layer LEDs
用于单层 LED 的新型聚合物
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Zhonghua Peng;Zhenan Bao;M. Galvin - 通讯作者:
M. Galvin
Air-Stable n-type Conductors and Semiconductors
- DOI:
- 发表时间:
2015-07 - 期刊:
- 影响因子:0
- 作者:
Zhenan Bao - 通讯作者:
Zhenan Bao
On Stress: Combining Human Factors and Biosignals to Inform the Placement and Design of a Skin-like Stress Sensor
关于压力:结合人为因素和生物信号,为类皮肤压力传感器的放置和设计提供信息
- DOI:
10.1145/3613904.3643473 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yasser Khan;M. Mauriello;Parsa Nowruzi;Akshara Motani;Grace Hon;N. Vitale;Jinxing Li;Ja;Amir Foudeh;Dalton Duvio;Erika Shols;M. Chesnut;James A. Landay;Jan Liphardt;Leanne M Williams;Keith D. Sudheimer;Boris Murmann;Zhenan Bao;P. Paredes - 通讯作者:
P. Paredes
Zhenan Bao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenan Bao', 18)}}的其他基金
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
- 批准号:
2203318 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
- 批准号:
2037164 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
- 批准号:
1434799 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
- 批准号:
1303178 - 财政年份:2013
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
- 批准号:
1101901 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
- 批准号:
1209468 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
- 批准号:
0968209 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
- 批准号:
1006989 - 财政年份:2010
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
- 批准号:
0901414 - 财政年份:2009
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)