Analysis, Spectra, and Number Theory
分析、谱和数论
基本信息
- 批准号:1446181
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The grant will support a conference "Analysis, Spectra and Number theory", to be held to be held at Princeton University and the Institute for Advanced Study, December 15 - 19, 2014. There will be approximately 20 speakers and an anticipated 200 participants. The conference will focus on number theory, with emphasis on its many relationships with analysis and spectral theory. Both (Fourier) analysis and spectral theory have their origins in understanding oscillating systems, interpreted broadly. It is very surprising, then, that they have been found to play a basic role in number theory. In his 1859 study of primes, Riemann observed that the number of primes up to a given integer could be expressed simply as a sum of oscillating components. It was later observed that that the "frequencies" occurring in Riemann's analysis show many regularities, and behave as if they were the eigenvalues of a large unitary matrix - i.e., an abstraction of the frequency spectrum of a drum. A further link was the discovery, beginning in the work of Maass and Selberg, of highly symmetric geometries (locally symmetric spaces) whose frequency spectrum appears to control many problems in number theory. These themes have expanded in many directions since, encompassing the field of analytic number theory as well as much of automorphic forms. The conference will examine the latest developments in these areas.Topics to be highlighted include arithmetic quantum chaos, analysis of families of L-functions, arithmetic statistics, and connections with ergodic theory. These areas have seen a flurry of activity in recent years, including: the resolution by Lindenstrauss of quantum unique ergodicity for arithmetic surfaces; spectacular breakthroughs by Bhargava and his colleagues concerning the statistics of number fields and elliptic curves; detailed models and predictions for the zero and value distribution of L-functions that were inspired via connections with random matrix theory; construction and the analysis of highly efficient expander graphs; the development of additive combinatorics based on the work of Green and Tao. The conference will include a problem session to suggest future directions for the field. The conference website can be found at https://sites.google.com/site/asnt2014/.
该补助金将支持会议“分析,光谱和数论”,将于2014年12月15日至19日在普林斯顿大学和高级研究所举行。将有大约20名发言者和预计200名与会者。会议将侧重于数论,重点是它与分析和谱理论的许多关系。傅立叶分析和频谱理论都起源于对振荡系统的理解,并得到了广泛的解释。令人惊讶的是,它们被发现在数论中起着基本的作用。在他1859年的研究素数,黎曼观察到,素数的数量到一个给定的整数可以简单地表示为一个总和的振荡组件。后来观察到,在黎曼分析中出现的“频率”显示出许多不确定性,并且表现得好像它们是一个大型酉矩阵的本征值-即,对鼓的频谱的抽象。 进一步的联系是发现,开始在工作的马斯和塞尔伯格,高度对称的几何(局部对称空间),其频谱似乎控制许多问题的数论。这些主题已经扩大了许多方向,因为,包括领域的解析数论以及自守形式。会议将探讨这些领域的最新发展,重点讨论的主题包括算术量子混沌、L函数族的分析、算术统计以及与遍历理论的联系。近年来,这些领域出现了一系列的活动,包括:Lindenstrauss对算术曲面的量子唯一遍历性的解决方案; Bhargava和他的同事在数域和椭圆曲线的统计方面取得了惊人的突破;通过与随机矩阵理论的联系,对L函数的零和值分布进行了详细的模型和预测;高效扩展图的构造和分析;基于绿色和陶的工作的加法组合学的发展。会议将包括一个问题会议,为该领域的未来发展方向提出建议。会议的网址是https://sites.google.com/site/asnt2014/。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shou-wu Zhang其他文献
Heights and reductions of semi-stable varieties
- DOI:
- 发表时间:
1996-12 - 期刊:
- 影响因子:1.8
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Admissible pairing on a curve
- DOI:
10.1007/bf01232429 - 发表时间:
1993-12 - 期刊:
- 影响因子:3.1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Equidistribution of CM-points on quaternion Shimura varieties
- DOI:
10.1155/imrn.2005.3657 - 发表时间:
2005 - 期刊:
- 影响因子:1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Gross–Schoen cycles and dualising sheaves
- DOI:
10.1007/s00222-009-0209-3 - 发表时间:
2008-12 - 期刊:
- 影响因子:3.1
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Linear forms, algebraic cycles, and derivatives of L-series
- DOI:
10.1007/s11425-019-1589-7 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
Shou-wu Zhang - 通讯作者:
Shou-wu Zhang
Shou-wu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shou-wu Zhang', 18)}}的其他基金
Intersection Theory and Height Pairings in Arithmetic Geometry
算术几何中的交集理论和高度配对
- 批准号:
2101787 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
- 批准号:
1700883 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1415502 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
- 批准号:
1065839 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research / FRG: Arakelov Theory and Modular Forms
合作研究/FRG:阿拉克洛夫理论和模块化形式
- 批准号:
0354436 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似国自然基金
利用AATSR和SPECTRA联合反演植被组分温度的方法研究
- 批准号:40471095
- 批准年份:2004
- 资助金额:37.0 万元
- 项目类别:面上项目
相似海外基金
Research on High-Precision Real-Gas Aerodynamics Prediction Technique Using High-Speed Vacuum Ultraviolet Absorption Spectra Fitting Method
高速真空紫外吸收光谱拟合法高精度真气气动预测技术研究
- 批准号:
23H01613 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fast, Cost-Effective and Fully Automated Structure Verification through Synergistic Use of Infrared and NMR Spectra
通过红外和核磁共振光谱的协同使用进行快速、经济高效的全自动结构验证
- 批准号:
2894203 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Studentship
Comparative Study of the High Harmonic Spectra of Transition Metal Compounds
过渡金属化合物高次谐波谱的比较研究
- 批准号:
2309321 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Conference: Groups of dynamical origin, automata and spectra
会议:动力学起源、自动机和谱组
- 批准号:
2309562 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
- 批准号:
2327245 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
- 批准号:
23K04670 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on absolutely continuous diffraction and dynamical spectra for S-adic tilings
S-adic平铺的绝对连续衍射和动力学光谱研究
- 批准号:
23K12985 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics
CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值
- 批准号:
EP/X042618/1 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Development of Multi-layering Techniques for Nanomaterial Thin Films towards Precise Control of Thermal Radiation Spectra
开发纳米材料薄膜多层技术以实现热辐射光谱的精确控制
- 批准号:
23KJ1390 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
RUI: Imaging and Spectra at the 2023 and 2024 Total Solar Eclipses
RUI:2023 年和 2024 年日全食的成像和光谱
- 批准号:
2225960 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant