Intersection Theory and Height Pairings in Arithmetic Geometry

算术几何中的交集理论和高度配对

基本信息

  • 批准号:
    2101787
  • 负责人:
  • 金额:
    $ 27.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Many questions in arithmetic geometry are motivated by the philosophy that algebraic information can be obtained by geometric methods. Height functions classify the arithmetic complexity of geometric objects, and a height pairing is a function on the heights of two objects that relates to how those geometric objects intersect. Height pairings have been instrumental in many foundational results in the field including Faltings’ celebrated proof of the Mordell Conjecture concerning rational points on curves. The PI will continue in this tradition by applying modern variations on height pairings to major open problems including an effective (computable) version of the Mordell Conjecture. The PI will regularly organize workshops and seminars to provide students, postdocs, and other mathematicians in the area substantial opportunities for instruction, discussion and collaboration. Graduate students supported by the award will receive training to contribute towards these projects. The investigator and his students will study arithmetical intersection theory of special cycles on Shimura varieties and diagonal cycles on split three folds. The PI expects to achieve the following objectives with this proposal: (1) making essential progress on conjectures by Gan--Gross--Prasad conjecture and Kudla; (2) further developing Arakelov geometry with the goal of proving the effective Mordell conjecture. These expected achievements will make a significant contribution to the study of the arithmetic geometry. It is also very likely that new questions and speculations will arise in the course of studying questions raised by this proposal, stimulating future research programs in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算术几何中的许多问题都是由这样一种哲学驱动的,即代数信息可以通过几何方法获得。高度函数对几何对象的算术复杂性进行分类,而高度配对是关于两个对象的高度的函数,它与这些几何对象如何相交有关。高度配对在该领域的许多基本结果中发挥了重要作用,包括法林斯著名的关于曲线上有理点的莫德尔猜想的证明。PI将继续这一传统,将高度配对的现代变化应用于主要的公开问题,包括有效的(可计算的)莫德尔猜想版本。国际数学联合会将定期举办讲习班和研讨会,为该领域的学生、博士后和其他数学家提供大量的指导、讨论和合作机会。获得该奖项支持的研究生将接受培训,为这些项目做出贡献。研究人员和他的学生将学习关于Shimura簇的特殊循环和关于分裂的三折的对角循环的算术交集理论。PI希望通过这一提议实现以下目标:(1)对Gan-Gross-Prasad猜想和Kudla猜想取得实质性进展;(2)进一步发展Arakelov几何,目的是证明有效的Mordell猜想。这些预期成果将对算术几何的研究做出重大贡献。在研究这项提案提出的问题的过程中,也很可能会出现新的问题和猜测,从而刺激该领域未来的研究计划。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Standard conjectures and height pairings
标准猜想和高度配对
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shou-wu Zhang其他文献

Heights and reductions of semi-stable varieties
  • DOI:
  • 发表时间:
    1996-12
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Admissible pairing on a curve
  • DOI:
    10.1007/bf01232429
  • 发表时间:
    1993-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Equidistribution of CM-points on quaternion Shimura varieties
Gross–Schoen cycles and dualising sheaves
  • DOI:
    10.1007/s00222-009-0209-3
  • 发表时间:
    2008-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang
Linear forms, algebraic cycles, and derivatives of L-series
  • DOI:
    10.1007/s11425-019-1589-7
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shou-wu Zhang
  • 通讯作者:
    Shou-wu Zhang

Shou-wu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shou-wu Zhang', 18)}}的其他基金

Topics in Arithmetic Geometry: Moduli Varieties, L-functions, Arakelov Theory and Their Interactions and Applications
算术几何主题:模簇、L 函数、Arakelov 理论及其相互作用和应用
  • 批准号:
    1700883
  • 财政年份:
    2017
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Topics in arithmetic geometry
算术几何主题
  • 批准号:
    1404369
  • 财政年份:
    2014
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Analysis, Spectra, and Number Theory
分析、谱和数论
  • 批准号:
    1446181
  • 财政年份:
    2014
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1415502
  • 财政年份:
    2013
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Periods of Automorphic Forms and Applications to L- Functions
FRG:协作研究:自同构形式的周期及其在 L 函数中的应用
  • 批准号:
    1065839
  • 财政年份:
    2011
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
  • 批准号:
    0970100
  • 财政年份:
    2010
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Topics in arithmetic algebraic geometry
算术代数几何专题
  • 批准号:
    0700322
  • 财政年份:
    2007
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
L-Functions and Automorphic Forms
L 函数和自守形式
  • 批准号:
    0638902
  • 财政年份:
    2006
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Collaborative Research / FRG: Arakelov Theory and Modular Forms
合作研究/FRG:阿拉克洛夫理论和模块化形式
  • 批准号:
    0354436
  • 财政年份:
    2004
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Topics in Arithmetic Algebraic Geometry
算术代数几何专题
  • 批准号:
    0201691
  • 财政年份:
    2002
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Studentship
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 27.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了