EAGER: Novel Catalyst Design Using Hierarchical Hybrid Materials

EAGER:使用分层混合材料的新型催化剂设计

基本信息

  • 批准号:
    1449582
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Novel catalyst design by tailored integration of nanomaterials with larger porous scaffoldsCatalysts are an enabling technology critical to key industrial sectors such as water, energy, chemicals, and pharmaceuticals. The effectiveness of any solid catalyst strongly depends upon the availability of surface reactive sites. Nanomaterials (that have dimensions in 1-100 nm range) provide significant advantages in this regard because they offer exceptionally higher surface area per unit mass compared to conventional materials. However, nanocatalysts are generally deployed as loose powders or colloids that can easily disperse into the surroundings, posing serious health and environmental risks. The goal of this EAGER award project made to Professor Sharmila Mukhopadhyay at Wright State University is to explore if this dilemma can be resolved by combining the advantages of nanomaterials with the structural integrity of robust solids. In natural biological surfaces such as intestinal and bronchial linings, an extremely high level of interaction in a compact space is enabled through "hierarchical" and "hybrid" architectures, in which larger scaffolds provide mechanical support and progressively smaller specialized attachments offer additional functional properties. This project will explore if and how the same concept can be adapted to catalyst design, starting with porous solid scaffolds and enhancing them with controlled sequence of strongly adhered nano-scale catalytic materials such as carbon nanotubes, oxide coated nanotubes, and metal nanoparticles. The payoff can be very high, since it will enable creation of innovative surface-driven devices including catalysts, sensors and energy storage components. Another benefit from this project will be educational components relating nanotechnology with catalysis and environmental sustainability. All participants in this project are involved in student mentoring as well as development of K-12 educational modules. Outreach programs that will benefit from this project include pre-college offerings for disadvantaged students and training camps for STEM Teachers.The goal of this project is to provide in-depth understanding of processing and properties of hierarchical hybrid materials, in which well-tailored distribution of nanoscale components of varying dimensions are anchored on larger porous scaffolds. Scaffold support materials envisioned are foams or fabric of carbon, whose specific surface areas are increased by several orders of magnitude through controlled attachment of carpet-like arrays of carbon nanotubes. These nanotubes may be coated with oxide layers for increased surface wettability and/or improved catalyst-support interactions. Finally these nanotube-enhanced scaffold surfaces will be functionalized with catalyst nanoparticles such as palladium. The materials synthesized will be used to degrade a model water-borne pollutant, trichloroethene (TCE), which is widely used by industry and known for its toxicity and persistence in ground-water. This project will answer three very basic questions relevant to surface-active devices: (i) Is it possible to attach multiple nano-catalysts to a single robust solid with sufficient control? (ii) Would the integrated hybrid material retain or improve the benefits of each component? If so, how does the integrated solid compare with its components and with conventional catalyst pellets and powders? (iii) Are these structures suitable for prolonged use? The answers to these questions can provide the groundwork for integrating advanced nanocatalysts into larger solid devices.
通过将纳米材料与更大的多孔支架进行定制集成来设计新型催化剂催化剂是一种对水、能源、化学品和制药等关键工业部门至关重要的使能技术。任何固体催化剂的有效性强烈地取决于表面活性位点的可用性。 纳米材料(具有1-100 nm范围内的尺寸)在这方面提供了显著的优势,因为与常规材料相比,它们提供了特别高的每单位质量的表面积。 然而,纳米催化剂通常以松散的粉末或胶体形式部署,容易分散到周围环境中,造成严重的健康和环境风险。赖特州立大学的Sharmila Mukhopadhyay教授的EAGER奖项目的目标是探索是否可以通过将纳米材料的优势与坚固固体的结构完整性相结合来解决这一困境。在天然生物表面,如肠道和支气管衬里,在一个紧凑的空间,一个极高水平的相互作用是通过“分层”和“混合”架构,其中较大的支架提供机械支持和逐渐较小的专门附件提供额外的功能特性。该项目将探索是否以及如何将相同的概念适用于催化剂设计,从多孔固体支架开始,并通过控制强粘附纳米级催化材料(如碳纳米管,氧化物涂层纳米管和金属纳米颗粒)的顺序来增强它们。 回报可能非常高,因为它将能够创建创新的表面驱动设备,包括催化剂、传感器和储能组件。该项目的另一个好处是将纳米技术与催化和环境可持续性相联系的教育内容。该项目的所有参与者都参与了学生辅导以及K-12教育模块的开发。 该项目的目标是深入了解分级混合材料的加工和性质,其中不同尺寸的纳米级组分的量身定制的分布被锚定在更大的多孔支架上。 设想的支架支撑材料是碳的泡沫或织物,其比表面积通过碳纳米管的地毯状阵列的受控附着而增加几个数量级。 这些纳米管可以用氧化物层涂覆,以增加表面润湿性和/或改善催化剂-载体相互作用。最后,这些纳米管增强的支架表面将用催化剂纳米颗粒如钯官能化。合成的材料将用于降解一种典型的水传播污染物三氯乙烯(TCE),三氯乙烯在工业中广泛使用,并因其在地下水中的毒性和持久性而闻名。 该项目将回答与表面活性器件相关的三个非常基本的问题:(i)是否有可能在充分控制的情况下将多个纳米催化剂附着到单个坚固的固体上?(ii)集成的混合材料是否会保留或改善每个组件的优点?如果是这样的话,与其组成部分和传统的催化剂颗粒和粉末相比,集成的固体如何?(iii)这些结构是否适合长期使用?这些问题的答案可以为将先进的纳米催化剂集成到更大的固体器件中提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharmila Mukhopadhyay其他文献

Sharmila Mukhopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharmila Mukhopadhyay', 18)}}的其他基金

EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
  • 批准号:
    2022000
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
A New Look at Classic Materials Systems: Advanced Synchrotron X-ray Characterization of Colloidal Nanocrystals
经典材料系统的新视角:胶体纳米晶体的先进同步加速器 X 射线表征
  • 批准号:
    1708617
  • 财政年份:
    2017
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
  • 批准号:
    1747826
  • 财政年份:
    2017
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Acquisition of Ultra-High Vacuum Photoelectron Spectroscopy Facility
购置超高真空光电子能谱设备
  • 批准号:
    9871107
  • 财政年份:
    1998
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
SGER: Improvement of the Superconductor-Metal Interface by Halogen Doping
SGER:通过卤素掺杂改善超导体-金属界面
  • 批准号:
    9521888
  • 财政年份:
    1995
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
ROW: Influence of Dopants on Ceramic-Metal Bonding
ROW:掺杂剂对陶瓷-金属键合的影响
  • 批准号:
    9017450
  • 财政年份:
    1991
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PolyNewrethanes. CO2 Valorisation for N-Functionalised Polyurethanes: Design and Synthesis of Catalyst Systems for Novel Sustainable Polymers
聚新聚氨酯。
  • 批准号:
    EP/X028208/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Fellowship
Development of chemical catalyst systems toward a novel therapeutic strategy
开发化学催化剂系统以实现新的治疗策略
  • 批准号:
    22KJ1129
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creation of novel heavier group 14-element Aromatics in pursuit of a main group element catalyst
创建新型重族 14 元素芳烃以寻求主族元素催化剂
  • 批准号:
    23H01943
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of asymmetric [3,3]-sigmatropic rearrangements by a novel biphenol/boric acid catalyst system and their applications in organic synthesis
新型联苯酚/硼酸催化剂体系的不对称[3,3]-σ重排及其在有机合成中的应用
  • 批准号:
    23K06047
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing novel catalyst layers for low-cost hydrogen generation for clean energy
开发新型催化剂层用于清洁能源的低成本制氢
  • 批准号:
    572576-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of prediction for novel aftertreatment performance of methane slip using active site model of methane oxidation catalyst
使用甲烷氧化催化剂活性位点模型开发新型甲烷逃逸后处理性能预测
  • 批准号:
    22K14436
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Catalyst/Support Interactions for Novel Fuel Cell Catalysts
新型燃料电池催化剂的催化剂/载体相互作用
  • 批准号:
    563306-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 8万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Low-Temperature Plasma-Catalyst Control of Dioxin & Furan Emissions from Waste Incinerators
二恶英的新型低温等离子体催化剂控制
  • 批准号:
    EP/V036696/1
  • 财政年份:
    2021
  • 资助金额:
    $ 8万
  • 项目类别:
    Research Grant
Repurposing the novel DATB catalyst for the direct catalytic cross-coupling of carboxylic acids
重新利用新型 DATB 催化剂进行羧酸的直接催化交叉偶联
  • 批准号:
    20K15292
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and application of versatile asymmetric Nazarov cyclization with novel biphenol-boric acid catalyst system
新型联苯酚-硼酸催化剂体系多功能不对称纳扎罗夫环化的开发与应用
  • 批准号:
    20K06937
  • 财政年份:
    2020
  • 资助金额:
    $ 8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了