EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
基本信息
- 批准号:2022000
- 负责人:
- 金额:$ 0.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project involves studying a new class of materials that can significantly improve the performance of currently available devices used in the energy, environmental, and biotech sectors of the economy. In recent decades, population growth, higher life expectancy and rapid industrialization have increased needs for water, energy, food, sanitation, and health care. For instance, the United States National Intelligence Council (USNIC) estimates that by 2030, societal demand in these areas will increase by 40-50%. Many of these increased demands can be addressed by advanced sensors, catalysts, membranes, and biomaterials that can, for instance, make it easier to remove chemical pollutants from water, detect and destroy pathogens, and carry out faster chemical and biological tests with improved precision and lower cost. Nanomaterials show great potential for such game-changing applications, but their use in actual devices has been rare, since they can easily escape into the surroundings posing high risk of material loss and environmental toxicity. This research project addresses this dilemma with a novel materials architecture that combines the power and efficiency of nanomaterials with the safety, durability and reusability of conventional solids. The specific goal of the project is to investigate bioinspired three-dimensional surfaces that combine the functional advantages of nanomaterials with the structural advantages of conventional solids. Such materials can provide a novel multifunctional platform for custom-tailored catalysts, antimicrobial agents, sensors and/or bio-scaffolds. The design concept is to enrich the surface of porous solid substrates with carpet-like arrays of carbon nanotubes (CNT) that can be further customized with nanoscale catalysts, sensors and biomolecules for tailoring their interaction with surrounding fluids. This architecture mimics natural biological materials such as microvilli and capillaries, where the larger membrane supports progressively smaller specialized attachments. This approach can offer exceptionally high levels of solid-fluid interaction in very compact space. Moreover, different regions of the same substrate can concurrently provide multiple simultaneous benefits in a single filter, reactor, or bio-engineering platform. Currently available devices do not use this architecture, due to the complexities of bonding dissimilar components that create multiple unknown interfaces. This project addresses these complex issues, and explores the possibility of synthesizing such materials for solid-fluid interactions involving catalysis, signal detection and cell scaffolding through the following research tasks: (1) investigation of nano-carpets on porous solids, and their affinity for different fluids; (2) study of chemical & catalytic reactions at hierarchical surfaces; and (3) understanding biological interaction of nano-carpets with peptides and living cells. In parallel with the research, education and outreach components are being developed for undergraduates, science teachers, community leaders as well as governmental policy personnel.
该研究项目涉及研究一类新材料,这些材料可以显着提高目前在能源,环境和生物技术经济领域使用的设备的性能。近几十年来,人口增长、预期寿命提高和快速工业化增加了对水、能源、食品、卫生和保健的需求。例如,美国国家情报理事会(USNIC)估计,到2030年,这些领域的社会需求将增加40- 50%。许多这些增加的需求可以通过先进的传感器,催化剂,膜和生物材料来解决,例如,可以更容易地从水中去除化学污染物,检测和破坏病原体,并以更高的精度和更低的成本进行更快的化学和生物测试。纳米材料在这种改变游戏规则的应用中显示出巨大的潜力,但它们在实际设备中的使用很少,因为它们很容易逃逸到周围环境中,造成材料损失和环境毒性的高风险。该研究项目通过一种新的材料结构解决了这一难题,该结构将纳米材料的力量和效率与传统固体的安全性,耐用性和可重复使用性相结合。该项目的具体目标是研究生物启发的三维表面,将纳米材料的功能优势与传统固体的结构优势联合收割机结合起来。这样的材料可以为定制的催化剂、抗微生物剂、传感器和/或生物支架提供新的多功能平台。设计理念是用碳纳米管(CNT)的地毯状阵列丰富多孔固体基质的表面,这些碳纳米管可以进一步用纳米级催化剂、传感器和生物分子进行定制,以定制它们与周围流体的相互作用。这种结构模仿天然生物材料,如微绒毛和毛细血管,其中较大的膜支持逐渐较小的专门附件。这种方法可以在非常紧凑的空间中提供非常高水平的固体-流体相互作用。此外,同一基底的不同区域可以在单个过滤器、反应器或生物工程平台中同时提供多种同时的益处。目前可用的设备不使用这种体系结构,这是由于键合创建多个未知接口的不同组件的复杂性。本项目针对这些复杂的问题,并通过以下研究任务探索合成用于涉及催化、信号检测和细胞支架的固液相互作用的此类材料的可能性:(1)研究多孔固体上的纳米地毯及其对不同流体的亲和力;(2)研究分级表面的化学催化反应;以及(3)了解纳米地毯与肽和活细胞的生物相互作用。在开展研究的同时,正在为大学生、科学教师、社区领导人以及政府决策人员制定教育和推广内容。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharmila Mukhopadhyay其他文献
Sharmila Mukhopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharmila Mukhopadhyay', 18)}}的其他基金
A New Look at Classic Materials Systems: Advanced Synchrotron X-ray Characterization of Colloidal Nanocrystals
经典材料系统的新视角:胶体纳米晶体的先进同步加速器 X 射线表征
- 批准号:
1708617 - 财政年份:2017
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
1747826 - 财政年份:2017
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
EAGER: Novel Catalyst Design Using Hierarchical Hybrid Materials
EAGER:使用分层混合材料的新型催化剂设计
- 批准号:
1449582 - 财政年份:2014
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
Acquisition of Ultra-High Vacuum Photoelectron Spectroscopy Facility
购置超高真空光电子能谱设备
- 批准号:
9871107 - 财政年份:1998
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
SGER: Improvement of the Superconductor-Metal Interface by Halogen Doping
SGER:通过卤素掺杂改善超导体-金属界面
- 批准号:
9521888 - 财政年份:1995
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
ROW: Influence of Dopants on Ceramic-Metal Bonding
ROW:掺杂剂对陶瓷-金属键合的影响
- 批准号:
9017450 - 财政年份:1991
- 资助金额:
$ 0.53万 - 项目类别:
Continuing Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 0.53万 - 项目类别:
Standard Grant
Antimicrobial biomaterials from bio-based feedstocks with novel feedstock supplementation strategies
采用新型原料补充策略的生物基原料制成的抗菌生物材料
- 批准号:
10063453 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Collaborative R&D
Develop novel processing for bio-based wadding material for fashion and textiles, with manufacturability assessment for scale-up
开发用于时装和纺织品的生物基填充材料的新型加工方法,并进行规模化的可制造性评估
- 批准号:
10036488 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Collaborative R&D
Development of BIO 300 as a novel treatment for idiopathic pulmonary fibrosis
BIO 300 的开发作为特发性肺纤维化的新型治疗方法
- 批准号:
10603367 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Development of novel medical and bio experiment safety teaching materials using VR, AR and simulators.
利用VR、AR和模拟器开发新型医学和生物实验安全教材。
- 批准号:
23K02813 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Future of ALCL: Novel Therapies, Origins, Bio-Markers and Mechanism of resistance
ALCL 的未来:新疗法、起源、生物标志物和耐药机制
- 批准号:
EP/X042308/1 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Research Grant
Greatly Extended Subzero Ischemic Storage of Renal Allografts Using Novel Bio-inspired Next Generation Cryoprotectants
使用新型仿生下一代冷冻保护剂大大延长肾同种异体移植物的零度以下缺血储存
- 批准号:
10761617 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Pictura Bio: Machine learning enhanced universal point of care diagnosis platform for infectious diseases leveraging novel fluorescent labelling of enveloped pathogens - developing the Alpha Prototype.
Pictura Bio:机器学习增强了传染病的通用护理点诊断平台,利用包膜病原体的新型荧光标记 - 开发 Alpha 原型。
- 批准号:
10077183 - 财政年份:2023
- 资助金额:
$ 0.53万 - 项目类别:
Collaborative R&D
MP1: a novel enzyme for bio-manufacturing Adipic Acid
MP1:一种用于生物制造己二酸的新型酶
- 批准号:
10016171 - 财政年份:2022
- 资助金额:
$ 0.53万 - 项目类别:
Collaborative R&D
Engineering saponin biosynthesis pathways for bio-production of novel vaccine adjuants
工程皂苷生物合成途径用于新型疫苗佐剂的生物生产
- 批准号:
BB/W017857/1 - 财政年份:2022
- 资助金额:
$ 0.53万 - 项目类别:
Research Grant














{{item.name}}会员




