SHF: EAGER: Collaborative Research: Mapping Software Analysis Problems to Efficient and Accurate Constraints

SHF:EAGER:协作研究:将软件分析问题映射到高效、准确的约束

基本信息

  • 批准号:
    1449626
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Techniques for finding faults in software systems, such as crashes, security vulnerabilities, and deadlocks, have become increasingly powerful over the past two decades. This is due in no small part to the development of efficient automated satisfiability solvers. The interest in applying these solvers to an ever wider class of software analysis applications has pushed solvers to their limits. As a result, analysis developers are currently forced to approximate analysis?s queries to make use of existing solvers. Because of this software analyses can mistakenly diagnose an error, miss reporting a true error, and suffer unnecessarily poor performance. This research seeks to establish accuracy as an important missing dimension of solver support and its success will lead to broader and more cost-effective use of solvers to produce high-quality software.This project is the first to systematically explore and link the accuracy requirements of a software analysis to the accuracy provided by a solver. This project does this by exploring approaches to specify the accuracy requirements of solver clients and detect, recover and report solution accuracy for integer and string constraints. These capabilities are being implemented in an existing solver interface framework, called Green, which is applied to perform symbolic execution of Java programs, using Symbolic Pathfinder. The project will evaluate the extent to this approach simplifies client analysis development, enables clients to use a variety of solvers - even those that do not perfectly match accuracy requirements, and improves analysis performance.
在过去的二十年中,查找软件系统中的故障(如崩溃、安全漏洞和死锁)的技术变得越来越强大。这在很大程度上要归功于高效的自动化满意度求解器的发展。将这些求解器应用于更广泛的软件分析应用程序的兴趣已经将求解器推向了它们的极限。因此,分析开发人员目前被迫近似分析?S查询来利用现有的求解器。因此,软件分析可能会错误地诊断错误,错过报告真正的错误,并遭受不必要的性能低下。这项研究试图建立准确性作为求解器支持的一个重要缺失维度,它的成功将导致求解器更广泛和更经济地使用,以生产高质量的软件。该项目是第一个系统地探索并将软件分析的精度要求与求解器提供的精度联系起来的项目。该项目通过探索方法来指定求解器客户端的精度要求,并检测、恢复和报告整数和字符串约束的解决方案精度。这些功能已经在一个名为Green的现有求解器接口框架中实现,该框架使用symbolic Pathfinder来执行Java程序的符号执行。该项目将评估该方法简化客户分析开发的程度,使客户能够使用各种求解器——即使是那些不能完全满足精度要求的求解器,并提高分析性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Dwyer其他文献

Design guide for small-scale local facilities
小型当地设施设计指南
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Oostermeijer;Matthew Dwyer
  • 通讯作者:
    Matthew Dwyer
Wireless <em>in vivo</em> recording of cortical activity by an ion-sensitive field effect transistor
  • DOI:
    10.1016/j.snb.2023.133549
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai
  • 通讯作者:
    Aviad Hai
Wireless emin vivo/em recording of cortical activity by an ion-sensitive field effect transistor
基于离子敏感场效应晶体管的皮质活动在体内的无线记录
  • DOI:
    10.1016/j.snb.2023.133549
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    7.700
  • 作者:
    Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai
  • 通讯作者:
    Aviad Hai

Matthew Dwyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Dwyer', 18)}}的其他基金

SHF: Small: Distribution-aware Testing for Neural Networks
SHF:小型:神经网络的分布感知测试
  • 批准号:
    2129824
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
FMitF: Track I: Focusing Incremental Abstraction-based Verification on Neural Networks Input Distributions
FMITF:第一轨:专注于神经网络输入分布的增量抽象验证
  • 批准号:
    2019239
  • 财政年份:
    2020
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Rearchitecting Neural Networks for Verification
SHF:中:重新架构神经网络进行验证
  • 批准号:
    1900676
  • 财政年份:
    2019
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
  • 批准号:
    1901769
  • 财政年份:
    2018
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
  • 批准号:
    1617916
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CSR-EHS Predictable Adaptive Residual Monitoring for Real-time Embedded Systems
适用于实时嵌入式系统的 CSR-EHS 可预测自适应残留监测
  • 批准号:
    0720654
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite-State Verification for High-Performance Computing
协作研究:高性能计算的有限状态验证
  • 批准号:
    0541263
  • 财政年份:
    2006
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
  • 批准号:
    0444167
  • 财政年份:
    2004
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Program Analysis Techniques to Support Dependable RTSJ Applications
协作研究:支持可靠 RTSJ 应用程序的程序分析技术
  • 批准号:
    0429149
  • 财政年份:
    2004
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
  • 批准号:
    0306607
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了