FMitF: Track I: Focusing Incremental Abstraction-based Verification on Neural Networks Input Distributions
FMITF:第一轨:专注于神经网络输入分布的增量抽象验证
基本信息
- 批准号:2019239
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The promise of machine learning is that it will improve the operation of systems across a variety of domains, such as agriculture, transportation, and medicine. With that promise comes the risk that such systems will not operate as intended, which may lead to harm to individuals or society. The project's impacts are in mitigating these risks by developing practical methods for assuring the correct operation of machine-learning systems. While risk is not unique to systems that incorporate machine learning, such systems present additional challenges to assuring their correct operation. Consider a camera-based driving system that aims to recognize a stop sign. Such a system must correctly identify a sign from among the enormous number of possible images while considering variables, such as, angle, lighting, distance, and any obstructions. Assuring such a system is correct requires evaluating the system on all such images, but it would take many years to evaluate each in turn on even the fastest computer. The project's novelties are in assuring correct behavior for groups of inputs collectively, which promises to make the assurance process practical.This project develops techniques to accelerate verification algorithms for assuring the correct operation of machine-learning models. First, these techniques exploit the fact that the system will only ever be required to consider a small fraction of the set of all possible inputs. Those inputs can be described symbolically and considered in groups to accelerate verification. Second, these techniques exploit the fact that a system may respond to different inputs by performing identical processing. Focusing verification on the processing performed by the system, rather than the inputs that are processed, allows verification to group sets of inputs to further accelerate assurance. The project develops a series of prototype implementations and benchmarks that demonstrate the utility and cost-effectiveness of the research, and that can be leveraged by the broader community for comparative evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的前景是,它将改善农业、交通和医学等各个领域的系统运行。 伴随着这一承诺而来的风险是,这些系统将无法按预期运行,这可能导致对个人或社会的伤害。 该项目的影响是通过开发确保机器学习系统正确运行的实用方法来减轻这些风险。 虽然风险并不是包含机器学习的系统所独有的,但此类系统在确保其正确操作方面存在额外的挑战。 考虑一个基于摄像头的驾驶系统,旨在识别停车标志。 这样的系统必须从大量可能的图像中正确地识别标志,同时考虑变量,例如角度,照明,距离和任何障碍物。 要确保这样一个系统是正确的,需要在所有这些图像上评估该系统,但即使是在最快的计算机上依次评估每个图像也需要许多年。 该项目的创新之处在于确保输入组的正确行为,这有望使保证过程实用化。该项目开发了加速验证算法的技术,以确保机器学习模型的正确操作。 首先,这些技术利用了这样一个事实,即系统只需要考虑所有可能输入的一小部分。 这些投入可以象征性地加以说明,并分组审议,以加速核查。 其次,这些技术利用了这样一个事实,即系统可以通过执行相同的处理来响应不同的输入。 将验证重点放在系统执行的处理上,而不是处理的输入上,允许验证对输入集进行分组,以进一步加速保证。该项目开发了一系列原型实现和基准,展示了研究的实用性和成本效益,并可以被更广泛的社区用于比较评估。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Input Distribution Coverage: Measuring Feature Interaction Adequacy in Neural Network Testing
- DOI:10.1145/3576040
- 发表时间:2022-12
- 期刊:
- 影响因子:4.4
- 作者:Swaroopa Dola;Matthew B. Dwyer;M. Soffa
- 通讯作者:Swaroopa Dola;Matthew B. Dwyer;M. Soffa
Distribution Models for Falsification and Verification of DNNs
- DOI:10.1109/ase51524.2021.9678590
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Felipe R. Toledo;David Shriver;Sebastian G. Elbaum;Matthew B. Dwyer
- 通讯作者:Felipe R. Toledo;David Shriver;Sebastian G. Elbaum;Matthew B. Dwyer
Distribution-Aware Testing of Neural Networks Using Generative Models
- DOI:10.1109/icse43902.2021.00032
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Swaroopa Dola;Matthew B. Dwyer;M. Soffa
- 通讯作者:Swaroopa Dola;Matthew B. Dwyer;M. Soffa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Dwyer其他文献
Design guide for small-scale local facilities
小型当地设施设计指南
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Oostermeijer;Matthew Dwyer - 通讯作者:
Matthew Dwyer
Wireless <em>in vivo</em> recording of cortical activity by an ion-sensitive field effect transistor
- DOI:
10.1016/j.snb.2023.133549 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai - 通讯作者:
Aviad Hai
Wireless emin vivo/em recording of cortical activity by an ion-sensitive field effect transistor
基于离子敏感场效应晶体管的皮质活动在体内的无线记录
- DOI:
10.1016/j.snb.2023.133549 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:7.700
- 作者:
Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai - 通讯作者:
Aviad Hai
Matthew Dwyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Dwyer', 18)}}的其他基金
SHF: Small: Distribution-aware Testing for Neural Networks
SHF:小型:神经网络的分布感知测试
- 批准号:
2129824 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
SHF: Medium: Rearchitecting Neural Networks for Verification
SHF:中:重新架构神经网络进行验证
- 批准号:
1900676 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
- 批准号:
1901769 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
- 批准号:
1617916 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
SHF: EAGER: Collaborative Research: Mapping Software Analysis Problems to Efficient and Accurate Constraints
SHF:EAGER:协作研究:将软件分析问题映射到高效、准确的约束
- 批准号:
1449626 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CSR-EHS Predictable Adaptive Residual Monitoring for Real-time Embedded Systems
适用于实时嵌入式系统的 CSR-EHS 可预测自适应残留监测
- 批准号:
0720654 - 财政年份:2007
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Collaborative Research: Finite-State Verification for High-Performance Computing
协作研究:高性能计算的有限状态验证
- 批准号:
0541263 - 财政年份:2006
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
- 批准号:
0444167 - 财政年份:2004
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Program Analysis Techniques to Support Dependable RTSJ Applications
协作研究:支持可靠 RTSJ 应用程序的程序分析技术
- 批准号:
0429149 - 财政年份:2004
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
- 批准号:
0306607 - 财政年份:2003
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
- 批准号:
2327349 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
- 批准号:
2327317 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant