SHF: Medium: Rearchitecting Neural Networks for Verification

SHF:中:重新架构神经网络进行验证

基本信息

  • 批准号:
    1900676
  • 负责人:
  • 金额:
    $ 125.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Machine learning has the potential to positively impact systems across society, for example, in agriculture, transportation, medicine, energy, and education. To realize that potential, however, methods for assuring the safe operation of those systems are needed. This project addresses this pressing need. Consider the increasing presence of self-driving capabilities in automobiles. They issue warnings when the car drifts outside of the lane and can initiate corrective steering actions. To do this, they employ a neural network to analyze images from a forward-facing camera to detect, for example, the lines that demark lane boundaries. A flaw in this neural network might, for instance, initiate a steering action in the wrong direction and thereby lead to vehicle damage or passenger injury. This project develops techniques for assuring that machine learning produces neural networks that come with guarantees about their behavior. Those guarantees can, in turn, be relied upon when determining that the overall system will operate safely. To achieve verifiably safe machine learning, this project leverages the growing body of work on symbolic verification algorithms for neural networks. These algorithms are cost-prohibitive when applied to existing neural networks. The approach taken in this project searches for and automatically generates an alternative neural network architecture that allows for an appropriate balance between the accuracy of the network and the tractability of verification. Once it finds such an architecture, it employs an iterative counterexample guided refinement approach to training the architecture which results in neural networks that meet essential safety guarantees. The project will organize an annual day-long "Rising Stars" forum for under-represented scholars working in formal methods, software engineering and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习有可能对整个社会的系统产生积极影响,例如,在农业、交通、医疗、能源和教育领域。然而,为了实现这一潜力,需要确保这些系统安全运行的方法。该项目解决了这一紧迫需求。考虑到汽车中越来越多的自动驾驶功能。当汽车漂移到车道外时,他们会发出警告,并可以启动纠正的转向行动。为了做到这一点,他们使用神经网络来分析来自前置摄像头的图像,以检测例如划分车道边界的线。例如,这种神经网络中的一个缺陷可能会在错误的方向上启动转向操作,从而导致车辆损坏或乘客受伤。这个项目开发了一些技术,以确保机器学习产生的神经网络对它们的行为有保证。反过来,在确定整个系统将安全运行时,可以依赖这些保证。为了实现可验证的安全机器学习,该项目利用了越来越多的神经网络符号验证算法方面的工作。当应用于现有的神经网络时,这些算法的成本令人望而却步。该项目采用的办法是寻找并自动生成一个替代神经网络结构,以便在网络的准确性和核查的可控性之间取得适当的平衡。一旦它找到了这样的体系结构,它就会使用迭代反例指导的精化方法来训练该体系结构,从而产生满足基本安全保证的神经网络。该项目将为在正式方法、软件工程和机器学习方面工作的代表不足的学者组织为期一天的年度“新星”论坛。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Systematic Generation of Diverse Benchmarks for DNN Verification
  • DOI:
    10.1007/978-3-030-53288-8_5
  • 发表时间:
    2020-06-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xu D;Shriver D;Dwyer MB;Elbaum S
  • 通讯作者:
    Elbaum S
Reducing DNN Properties to Enable Falsification with Adversarial Attacks
DNNV: A Framework for Deep Neural Network Verification
  • DOI:
    10.1007/978-3-030-81685-8_6
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Shriver;Sebastian G. Elbaum;Matthew B. Dwyer
  • 通讯作者:
    David Shriver;Sebastian G. Elbaum;Matthew B. Dwyer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Dwyer其他文献

Design guide for small-scale local facilities
小型当地设施设计指南
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Oostermeijer;Matthew Dwyer
  • 通讯作者:
    Matthew Dwyer
Wireless <em>in vivo</em> recording of cortical activity by an ion-sensitive field effect transistor
  • DOI:
    10.1016/j.snb.2023.133549
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai
  • 通讯作者:
    Aviad Hai
Wireless emin vivo/em recording of cortical activity by an ion-sensitive field effect transistor
基于离子敏感场效应晶体管的皮质活动在体内的无线记录
  • DOI:
    10.1016/j.snb.2023.133549
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    7.700
  • 作者:
    Suyash Bhatt;Emily Masterson;Tianxiang Zhu;Jenna Eizadi;Judy George;Nesya Graupe;Adam Vareberg;Jack Phillips;Ilhan Bok;Matthew Dwyer;Alireza Ashtiani;Aviad Hai
  • 通讯作者:
    Aviad Hai

Matthew Dwyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Dwyer', 18)}}的其他基金

SHF: Small: Distribution-aware Testing for Neural Networks
SHF:小型:神经网络的分布感知测试
  • 批准号:
    2129824
  • 财政年份:
    2021
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
FMitF: Track I: Focusing Incremental Abstraction-based Verification on Neural Networks Input Distributions
FMITF:第一轨:专注于神经网络输入分布的增量抽象验证
  • 批准号:
    2019239
  • 财政年份:
    2020
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
  • 批准号:
    1901769
  • 财政年份:
    2018
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
SHF: Small: Measurable Program Analysis
SHF:小型:可衡量的计划分析
  • 批准号:
    1617916
  • 财政年份:
    2016
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
SHF: EAGER: Collaborative Research: Mapping Software Analysis Problems to Efficient and Accurate Constraints
SHF:EAGER:协作研究:将软件分析问题映射到高效、准确的约束
  • 批准号:
    1449626
  • 财政年份:
    2014
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
CSR-EHS Predictable Adaptive Residual Monitoring for Real-time Embedded Systems
适用于实时嵌入式系统的 CSR-EHS 可预测自适应残留监测
  • 批准号:
    0720654
  • 财政年份:
    2007
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Finite-State Verification for High-Performance Computing
协作研究:高性能计算的有限状态验证
  • 批准号:
    0541263
  • 财政年份:
    2006
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
  • 批准号:
    0444167
  • 财政年份:
    2004
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Program Analysis Techniques to Support Dependable RTSJ Applications
协作研究:支持可靠 RTSJ 应用程序的程序分析技术
  • 批准号:
    0429149
  • 财政年份:
    2004
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Continuing Grant
BOGOR : A Model Checking Framework for Dynamic Software
BOGOR:动态软件的模型检查框架
  • 批准号:
    0306607
  • 财政年份:
    2003
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 125.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了