EAGER: A New Methodology for Studying Dynamical Systems Using Probabilistic Digital Logic
EAGER:使用概率数字逻辑研究动态系统的新方法
基本信息
- 批准号:1450798
- 负责人:
- 金额:$ 7.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-15 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems theory and simulation play an important role in the understanding of the behavior of complex physical phenomena such as weather and its forecast, turbulence generated by moving vehicles and planes, ocean currents and flow of warm and cold air inside buildings. Even though dynamical systems have been studied for decades, researchers still struggle with the accurate characterization of their behavior. Large-scale hardware and software simulations are usually employed to that end. This research will investigate an unconventional hardware design methodology that uses probabilities to represent values of parameters associated with the behavior of dynamical systems. This results in significant reductions of the hardware cost and runtime of dynamical systems simulations. The approach also potentially results in inherently superior design methods that characterize dynamical systems faster and more accurately, with far reaching implications for improved weather forecasting, car and plane fuel efficiency, and green buildings with efficient heating and cooling. The goal of this EArly-Grant for Exploratory Research (EAGER) is to approach the complexity in dynamical systems using an inherently probabilistic computational methodology called stochastic computing - a non-traditional way of computing that encodes values as probabilities, instead of deterministic binary numbers. Instead of perturbing a deterministic dynamical system such as the logistic map x |-- u x(1-x) with noise, stochastic computing encodes a variable itself as a random variable, thus embedding the noise in the encoding itself. Such an inherently stochastic approach could point to a new and effective avenue for computations in large dynamical systems, and enables extremely simple circuits to be used to perform non-trivial computations using a fraction of the resources required by traditional hardware and software solutions. However, a fundamental issue has to be addressed for the successful application of stochastic computing to dynamical system simulation: stochastic computing requires the probabilistic inputs to be uncorrelated random variables. The feedback path in dynamical systems from system outputs to the inputs inevitably creates strong correlations between probabilistic representations of the inputs unless specific techniques are used to reduce such correlations. The PIs plan to investigate such methods by adding hardware resources that do not increase hardware costs significantly.
动力系统理论和模拟在理解复杂物理现象的行为方面发挥着重要作用,例如天气及其预报,移动车辆和飞机产生的湍流,洋流以及建筑物内的冷暖空气流动。尽管动力系统已经被研究了几十年,研究人员仍然在努力准确地描述它们的行为。为此,通常采用大规模的硬件和软件模拟。本研究将探讨一种非传统的硬件设计方法,该方法使用概率来表示与动态系统行为相关的参数值。这将导致显着减少的硬件成本和运行时间的动态系统仿真。该方法还可能导致固有的上级设计方法,更快,更准确地表征动力系统,具有深远的影响,改善天气预报,汽车和飞机的燃油效率,以及绿色建筑物的高效加热和冷却。 EARLY探索性研究资助(EAGER)的目标是使用称为随机计算的固有概率计算方法来接近动力系统的复杂性-这是一种非传统的计算方式,将值编码为概率,而不是确定性的二进制数。而不是扰动一个确定性的动力系统,如逻辑斯蒂映射x|-- u x(1-x)对于噪声,随机计算将变量本身编码为随机变量,从而将噪声嵌入编码本身中。这种固有的随机方法可以为大型动态系统中的计算指出一种新的有效途径,并使非常简单的电路能够使用传统硬件和软件解决方案所需的一小部分资源来执行非平凡的计算。然而,一个基本的问题必须解决的成功应用随机计算的动力系统仿真:随机计算要求的概率输入是不相关的随机变量。动态系统中从系统输出到输入的反馈路径不可避免地在输入的概率表示之间产生强相关性,除非使用特定的技术来减少这种相关性。 PI计划通过添加不会显著增加硬件成本的硬件资源来研究此类方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kia Bazargan其他文献
A Novel Memory Structure for Embedded Systems: Flexible Sequential and Random Access Memory
- DOI:
10.1007/s11390-005-0596-x - 发表时间:
2005-09-01 - 期刊:
- 影响因子:1.300
- 作者:
Ying Chen;Karthik Ranganathan;Vasudev V. Pai;David J. Lilja;Kia Bazargan - 通讯作者:
Kia Bazargan
Kia Bazargan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kia Bazargan', 18)}}的其他基金
I-Corps: Harnessing Unary Computing for Modern Applications
I-Corps:利用一元计算实现现代应用
- 批准号:
2031325 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
Standard Grant
PFI-TT: Harnessing the power of uncompressed number representation for modern computations
PFI-TT:利用未压缩数字表示的力量进行现代计算
- 批准号:
2016390 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
Standard Grant
SHF: Medium: Back to the Future with Printed, Flexible Electronics Design in a Post-CMOS Era when Transistor Counts Matter Again
SHF:中:晶体管再次发挥重要作用的后 CMOS 时代,通过印刷、柔性电子设计回到未来
- 批准号:
1408123 - 财政年份:2014
- 资助金额:
$ 7.78万 - 项目类别:
Standard Grant
CAREER: Computer-Aided Design of Mixed ASIC / Reconfigurable Fabrics of the Nanometer Era
职业:纳米时代混合 ASIC/可重构织物的计算机辅助设计
- 批准号:
0347891 - 财政年份:2004
- 资助金额:
$ 7.78万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Continuing Grant
Chemical Cartography via High-Throughput Experimentation: Predictive Models, Catalyst Development, and New Synthetic Methodology
通过高通量实验进行化学制图:预测模型、催化剂开发和新的合成方法
- 批准号:
RGPIN-2019-04985 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Discovery Grants Program - Individual
A new methodology linking interactional and experiential approaches, and involving young people as co-analysts of mental health encounters.
一种将互动方法和体验方法联系起来的新方法,并让年轻人作为心理健康遭遇的共同分析者。
- 批准号:
MR/X003108/1 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Research Grant
Development of New Methodology for the Synthesis of Naturally Occurring Maleic Anhydrides and Cyclopentenediones
天然马来酸酐和环戊烯二酮合成新方法的开发
- 批准号:
568954-2022 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Postgraduate Scholarships - Doctoral
Methodology: Developing Reporting Criteria for Pregnancy Surveillance Cohorts and New Techniques for Supporting Target Trials
方法:制定妊娠监测队列的报告标准和支持目标试验的新技术
- 批准号:
10696261 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Methodology: Developing Reporting Criteria for Pregnancy Surveillance Cohorts and New Techniques for Supporting Target Trials
方法:制定妊娠监测队列的报告标准和支持目标试验的新技术
- 批准号:
10381146 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Methodology: Developing Reporting Criteria for Pregnancy Surveillance Cohorts and New Techniques for Supporting Target Trials
方法:制定妊娠监测队列的报告标准和支持目标试验的新技术
- 批准号:
10495248 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Inverse genetics: A new methodology for the identification of key genes of somatic cell differentiation
反向遗传学:鉴定体细胞分化关键基因的新方法
- 批准号:
21K19603 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Chemical Cartography via High-Throughput Experimentation: Predictive Models, Catalyst Development, and New Synthetic Methodology
通过高通量实验进行化学制图:预测模型、催化剂开发和新的合成方法
- 批准号:
RGPIN-2019-04985 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Discovery Grants Program - Individual
Creation of a methodology to search for new materials by utilizing a metadynamics method effectively
创建有效利用元动力学方法寻找新材料的方法
- 批准号:
21K18610 - 财政年份:2021
- 资助金额:
$ 7.78万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)